[1] |
Sheth RA, Niekamp A, Quencer KB, et al. Thrombosis in cancer patients: etiology, incidence, and management[J]. Cardiovasc Diagn Ther, 2017,7(Suppl 3):S178-S185. DOI: 10.21037/cdt.2017.11.02.
doi: 10.21037/cdt
|
[2] |
Zer A, Moskovitz M, Hwang DM, et al. ALK-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism[J]. Clin Lung Cancer, 2017,18(2):156-161. DOI: 10.1016/j.cllc.2016.10.007.
doi: 10.1016/j.cllc.2016.10.007
|
[3] |
Ades S, Kumar S, Alam M, et al. Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer[J]. J Thromb Haemost, 2015,13(6):998-1003. DOI: 10.1111/jth.12910.
doi: 10.1111/jth.12910
pmid: 25809746
|
[4] |
Mir Seyed Nazari P, Riedl J, Preusser M, et al. Combination of isocitrate dehydrogenase 1 (IDH1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous throm-boembolism[J]. J Thromb Haemost, 2018,16(6):1121-1127. DOI: 10.1111/jth.14129.
doi: 10.1111/jth.14129
pmid: 29676036
|
[5] |
Rumi E, Pietra D, Pascutto C, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis[J]. Blood, 2014,124(7):1062-1069. DOI: 10.1182/blood-2014-05-578435.
|
[6] |
Guo J, Deng QF, Xiong W, et al. Comparison among different pre-sentations of venous thromboembolism because of lung cancer[J]. Clin Respir J, 2019,13(9):574-582. DOI: 10.1111/crj.13060.
doi: 10.1111/crj.v13.9
|
[7] |
Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs[J]. JAMA, 2014,311(19):1998-2006. DOI: 10.1001/jama.2014.3741.
doi: 10.1001/jama.2014.3741
|
[8] |
Zhang M, Wu S, Hu C. Do lung cancer patients require routine anticoagulation treatment? A meta-analysis[J]. J Int Med Res, 2020,48(1):300060519896919. DOI: 10.1177/0300060519896919.
|
[9] |
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways[J]. Cancers (Basel), 2017,9(5):52. DOI: 10.3390/cancers9050052.
doi: 10.3390/cancers9050052
|
[10] |
Evans M, O'Sullivan B, Smith M, et al. Large-scale EGFR mutation testing in clinical practice: analysis of a series of 18 920 non-small cell lung cancer cases[J]. Pathol Oncol Res, 2019,25(4):1401-1409. DOI: 10.1007/s12253-018-0460-2.
doi: 10.1007/s12253-018-0460-2
|
[11] |
Magnus N, Garnier D, Rak J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells[J]. Blood, 2010,116(5):815-818. DOI: 10.1182/blood-2009-10-250639.
|
[12] |
Noël-Savina E, Paleiron N, Le Gal G, et al. Mutation EGFR dans les adénocarcinomes broncho-pulmonaires: facteur de risque de MVTE?[J]. Rev Mal Respir, 2012,29(9):1137-1140. DOI: 10.1016/j.rmr.2012.09.012.
doi: 10.1016/j.rmr.2012.09.012
pmid: 23200589
|
[13] |
Wang J, Hu B, Li T, et al. The EGFR-rearranged adenocarcinoma is associated with a high rate of venous thromboembolism[J]. Ann Transl Med, 2019,7(23):724. DOI: 10.21037/atm.2019.12.24.
doi: 10.21037/atm
|
[14] |
Corrales-Rodriguez L, Soulières D, Weng X, et al. Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study[J]. Thromb Res, 2014,133(1):48-51. DOI: 10.1016/j.thromres.2013.10.042.
doi: 10.1016/j.thromres.2013.10.042
|
[15] |
Verso M, Chiari R, Mosca S, et al. Incidence of Ct scan-detected pulmonary embolism in patients with oncogene-addicted, advanced lung adenocarcinoma[J]. Thromb Res, 2015,136(5):924-927. DOI: 10.1016/j.thromres.2015.09.006.
doi: 10.1016/j.thromres.2015.09.006
|
[16] |
Davidsson E, Murgia N, Ortiz-Villalón C, et al. Mutational status predicts the risk of thromboembolic events in lung adenocarcinoma[J]. Multidiscip Respir Med, 2017,12:16. DOI: 10.1186/s40248-017-0097-0.
doi: 10.1186/s40248-017-0097-0
|
[17] |
Dou F, Li H, Zhu M, et al. Association between oncogenic status and risk of venous thromboembolism in patients with non-small cell lung cancer[J]. Respir Res, 2018,19(1):88. DOI: 10.1186/s12931-018-0791-2.
doi: 10.1186/s12931-018-0791-2
|
[18] |
Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer[J]. Nature, 2007,448(7153):561-566. DOI: 10.1038/nature05945.
doi: 10.1038/nature05945
|
[19] |
Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer[J]. Cell, 2007,131(6):1190-1203. DOI: 10.1016/j.cell.2007.11.025.
doi: 10.1016/j.cell.2007.11.025
|
[20] |
Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers[J]. J Clin Oncol, 2012,30(8):863-870. DOI: 10.1200/jco.2011.35.6345.
doi: 10.1200/JCO.2011.35.6345
|
[21] |
Davies KD, Le AT, Theodoro MF, et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer[J]. Clin Cancer Res, 2012,18(17):4570-4579. DOI: 10.1158/1078-0432.Ccr-12-0550.
doi: 10.1158/1078-0432.CCR-12-0550
|
[22] |
Neel DS, Allegakoen DV, Olivas V, et al. Differential subcellular localization regulates oncogenic signaling by ROS1 kinase fusion proteins[J]. Cancer Res, 2019,79(3):546-556. DOI: 10.1158/0008-5472.Can-18-1492.
doi: 10.1158/0008-5472.CAN-18-1492
|
[23] |
Ng TL, Smith DE, Mushtaq R, et al. ROS1 gene rearrangements are associated with an elevated risk of peridiagnosis thromboembolic events[J]. J Thorac Oncol, 2019,14(4):596-605. DOI: 10.1016/j.jtho.2018.12.001.
doi: 10.1016/j.jtho.2018.12.001
|
[24] |
Chiari R, Ricciuti B, Landi L, et al. ROS1-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism: analysis from a phaseⅡ, prospective, multicenter, two-arms trial (METROS)[J]. Clin Lung Cancer, 2020,21(1):15-20. DOI: 10.1016/j.cllc.2019.06.012.
doi: S1525-7304(19)30154-8
pmid: 31607443
|
[25] |
Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020,19(3):1997-2007. DOI: 10.3892/etm.2020.8454.
|
[26] |
Roskoski R Jr. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers[J]. Pharmacol Res, 2018,135:239-258. DOI: 10.1016/j.phrs.2018.08.013.
doi: 10.1016/j.phrs.2018.08.013
|
[27] |
El Osta B, Behera M, Kim S, et al. Characteristics and outcomes of patients with metastatic KRAS-mutant lung adenocarcinomas: the lung cancer mutation consortium experience[J]. J Thorac Oncol, 2019,14(5):876-889. DOI: 10.1016/j.jtho.2019.01.020.
doi: 10.1016/j.jtho.2019.01.020
|
[28] |
Linardou H, Kotoula V, Kouvatseas G, et al. Genotyping KRAS and EGFR mutations in Greek patients with mon-small-cell lung cancer: incidence, significance and implications for treatment[J]. Cancer Genomics Proteomics, 2019,16(6):531-541. DOI: 10.21873/cgp.20155.
doi: 10.21873/cgp.20155
pmid: 31659106
|
[29] |
Graf C, Ruf W. Tissue factor as a mediator of coagulation and signaling in cancer and chronic inflammation[J]. Thromb Res, 2018,164(Suppl 1):S143-S147. DOI: 10.1016/j.thromres.2018.01.023.
doi: 10.1016/j.thromres.2018.01.023
|
[30] |
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer[J]. J Hematol Oncol, 2020,13(1):93. DOI: 10.1186/s13045-020-00932-z.
doi: 10.1186/s13045-020-00932-z
|
[31] |
Yang S, Yang L, Wu Y, et al. Anaplastic lymphoma kinase rea-rrangement may increase the incidence of venous thromboembolism by increasing tissue factor expression in advanced lung adenocarcinoma[J]. Ann Transl Med, 2020,8(20):1307. DOI: 10.21037/atm-20-6619.
doi: 10.21037/atm
|
[32] |
Regina S, Rollin J, Bléchet C, et al. Tissue factor expression in non-small cell lung cancer: relationship with vascular endothelial growth factor expression, microvascular density, and K-ras mutation[J]. J Thorac Oncol, 2008,3(7):689-697. DOI: 10.1097/JTO.0b013e31817c1b21.
doi: 10.1097/JTO.0b013e31817c1b21
|