国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (6): 366-369.doi: 10.3760/cma.j.cn371439-20201207-00070
收稿日期:
2020-12-07
修回日期:
2020-12-27
出版日期:
2021-06-08
发布日期:
2021-06-24
通讯作者:
于雁
E-mail:yuyan@hrbmu.edu.cn
Received:
2020-12-07
Revised:
2020-12-27
Online:
2021-06-08
Published:
2021-06-24
Contact:
Yu Yan
E-mail:yuyan@hrbmu.edu.cn
摘要:
MET14外显子(METex14)跳跃突变的分子机制主要是METex14跳跃导致c-Cbl酪氨酸结合位点丢失,从而引起蛋白酶体介导的MET蛋白降解率降低,使MET信号持续激活,最终导致肿瘤发生。METex14跳跃突变在非小细胞肺癌中的发生率为3%~4%。作用于METex14跳跃突变的药物包括克唑替尼、卡马替尼、特泊替尼、沃利替尼等,且客观缓解率均较高,安全性良好。但是由于存在基因扩增、第二位点突变、旁路激活和病理类型转化等,经靶向药物治疗后出现药物耐药需引起注意。
周晔, 于雁. MET14外显子跳跃突变与非小细胞肺癌[J]. 国际肿瘤学杂志, 2021, 48(6): 366-369.
Zhou Ye, Yu Yan. MET14 exon skipping mutation and non-small cell lung cancer[J]. Journal of International Oncology, 2021, 48(6): 366-369.
[1] |
Cufer T, Knez L. Update on systemic therapy of advanced non-small-cell lung cancer[J]. Expert Rev Anticancer Ther, 2014,14(10):1189-1203. DOI: 10.1586/14737140.2014.940327.
doi: 10.1586/14737140.2014.940327 |
[2] | Malik R, Mambetsariev I, Fricke J, et al. MET receptor in oncology: from biomarker to therapeutic target[J]. Adv Cancer Res, 2020,147:259-301. DOI: 10.1016/bs.acr.2020.04.006. |
[3] |
Recondo G, Che J, Jänne PA, et al. MET targeting dysregulation in cancer[J]. Cancer Discov, 2020,10(7):922-934. DOI: 10.1158/2159-8290.Cd-19-1446.
doi: 10.1158/2159-8290.CD-19-1446 |
[4] |
Paik PK, Drilon A, Fan PD, et al. Response to MET inhibitors in patients with stage Ⅳlung adenocarcinomas harboring MET mutations causing exon 14 skipping[J]. Cancer Discov, 2015,5(8):842-849. DOI: 10.1158/2159-8290.Cd-14-1467.
doi: 10.1158/2159-8290.CD-14-1467 |
[5] |
Awad MM, Oxnard GR, Jackman DM, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression[J]. J Clin Oncol, 2016,34(7):721-730. DOI: 10.1200/jco.2015.63.4600.
doi: 10.1200/JCO.2015.63.4600 |
[6] |
Tong JH, Yeung SF, Chan AW, et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis[J]. Clin Cancer Res, 2016,22(12):3048-3056. DOI: 10.1158/1078-0432.Ccr-15-2061.
doi: 10.1158/1078-0432.CCR-15-2061 |
[7] |
Schrock AB, Frampton GM, Suh J, et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations[J]. J Thorac Oncol, 2016,11(9):1493-1502. DOI: 10.1016/j.jtho.2016.06.004.
doi: 10.1016/j.jtho.2016.06.004 pmid: 27343443 |
[8] |
Saffroy R, Fallet V, Girard N, et al. MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung[J]. Oncotarget, 2017,8(26):42428-42437. DOI: 10.18632/oncotarget.16403.
doi: 10.18632/oncotarget.v8i26 |
[9] |
Saito M, Shiraishi K, Kunitoh H, et al. Gene aberrations for precision medicine against lung adenocarcinoma[J]. Cancer Sci, 2016,107(6):713-720. DOI: 10.1111/cas.12941.
doi: 10.1111/cas.2016.107.issue-6 |
[10] |
Zheng D, Wang R, Ye T, et al. MET exon 14 skipping defines a unique molecular class of non-small cell lung cancer[J]. Oncotarget, 2016,7(27):41691-41702. DOI: 10.18632/oncotarget.9541.
doi: 10.18632/oncotarget.v7i27 |
[11] |
Liu SY, Gou LY, Li AN, et al. The unique characteristics of MET exon 14 mutation in chinese patients with NSCLC[J]. J Thorac Oncol, 2016,11(9):1503-1510. DOI: 10.1016/j.jtho.2016.05.016.
doi: 10.1016/j.jtho.2016.05.016 |
[12] |
Lee GD, Lee SE, Oh DY, et al. MET exon 14 skipping mutations in lung adenocarcinoma: clinicopathologic implications and prognostic values[J]. J Thorac Oncol, 2017,12(8):1233-1246. DOI: 10.1016/j.jtho.2017.04.031.
doi: 10.1016/j.jtho.2017.04.031 |
[13] |
Gow CH, Hsieh MS, Wu SG, et al. A comprehensive analysis of clinical outcomes in lung cancer patients harboring a MET exon 14 skipping mutation compared to other driver mutations in an East Asian population[J]. Lung Cancer, 2017,103:82-89. DOI: 10.1016/j.lungcan.2016.12.001.
doi: 10.1016/j.lungcan.2016.12.001 |
[14] |
Kwon D, Koh J, Kim S, et al. MET exon 14 skipping mutation in triple-negative pulmonary adenocarcinomas and pleomorphic carcinomas: an analysis of intratumoral MET status heterogeneity and clinicopathological characteristics[J]. Lung Cancer, 2017,106:131-137. DOI: 10.1016/j.lungcan.2017.02.008.
doi: 10.1016/j.lungcan.2017.02.008 |
[15] |
Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors[J]. Cancer Discov, 2015,5(8):850-859. DOI: 10.1158/2159-8290.Cd-15-0285.
doi: 10.1158/2159-8290.CD-15-0285 pmid: 25971938 |
[16] | Cortot AB, Kherrouche Z, Descarpentries C, et al. Exon 14 deleted MET receptor as a new biomarker and target in cancers[J]. J Natl Cancer Inst, 2017,109(5). DOI: 10.1093/jnci/djw262. |
[17] |
Descarpentries C, Leprêtre F, Escande F, et al. Optimization of routine testing for MET exon 14 splice site mutations in NSCLC patients[J]. J Thorac Oncol, 2018,13(12):1873-1883. DOI: 10.1016/j.jtho.2018.08.2023.
doi: S1556-0864(18)33038-7 pmid: 30195702 |
[18] |
Kim EK, Kim KA, Lee CY, et al. Molecular diagnostic assays and clinicopathologic implications of MET exon 14 skipping mutation in non-small-cell lung cancer[J]. Clin Lung Cancer, 2019,20(1):e123-e132. DOI: 10.1016/j.cllc.2018.10.004.
doi: 10.1016/j.cllc.2018.10.004 |
[19] |
Aggarwal C, Thompson JC, Black TA, et al. Clinical implications of plasma-based genotyping with the delivery of personalized therapy in metastatic non-small cell lung cancer[J]. JAMA Oncol, 2019,5(2):173-180. DOI: 10.1001/jamaoncol.2018.4305.
doi: 10.1001/jamaoncol.2018.4305 pmid: 30325992 |
[20] |
Reungwetwattana T, Liang Y, Zhu V, et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: the why, the how, the who, the unknown, and the inevitable[J]. Lung Cancer, 2017,103:27-37. DOI: 10.1016/j.lungcan.2016.11.011.
doi: S0169-5002(16)30527-X pmid: 28024693 |
[21] |
Liu X, Jia Y, Stoopler MB, et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations[J]. J Clin Oncol, 2016,34(8):794-802. DOI: 10.1200/jco.2015.62.0674.
doi: 10.1200/JCO.2015.62.0674 |
[22] |
Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration[J]. Nat Med, 2020,26(1):47-51. DOI: 10.1038/s41591-019-0716-8.
doi: 10.1038/s41591-019-0716-8 |
[23] |
Middleton G, Popat S, Fletcher P, et al. National lung matrix trial (NLMT): first results from an umbrella phase Ⅱ trial in advanced non-small cell lung cancer (NSCLC)[J]. J Thorac Oncol, 2019,14(10):S7. DOI: 10.1016/j.jtho.2019.08.060.
doi: 10.1016/j.jtho.2019.08.060 |
[24] |
Lee C, Usenko D, Frampton GM, et al. MET 14 deletion in sarco-matoid non-small-cell lung cancer detected by next-generation sequencing and successfully treated with a MET inhibitor[J]. J Thorac Oncol, 2015,10(12):e113-e114. DOI: 10.1097/jto.0000000000000-645.
doi: 10.1097/JTO.0000000000000645 |
[25] |
Baltschukat S, Engstler BS, Huang A, et al. Capmatinib (INC280) is active against models of non-small cell lung cancer and other cancer types with defined mechanisms of MET activation[J]. Clin Cancer Res, 2019,25(10):3164-3175. DOI: 10.1158/1078-0432.Ccr-18-2814.
doi: 10.1158/1078-0432.CCR-18-2814 pmid: 30674502 |
[26] |
Wolf J, Seto T, Han JY, et al. Capmatinib in MET exon 14-mutated or -amplified non-small-cell lung cancer[J]. N Engl J Med, 2020,383(10):944-957. DOI: 10.1056/NEJMoa2002787.
doi: 10.1056/NEJMoa2002787 |
[27] |
Paik PK, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations[J]. N Engl J Med, 2020,383(10):931-943. DOI: 10.1056/NEJMoa2004407.
doi: 10.1056/NEJMoa2004407 |
[28] |
Lu S, Fang J, Li XY, et al. Phase II study of savolitinib in patients (pts) with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations (METex14+)[J]. J Clin Oncol, 2020,38(15_suppl):9519. DOI: 10.1200/JCO.2020.38.15_suppl.9519.
doi: 10.1200/JCO.2020.38.15_suppl.9519 |
[29] |
Suzawa K, Offin M, Lu D, et al. Activation of KRAS mediates resistance to targeted therapy in MET exon 14-mutant non-small cell lung cancer[J]. Clin Cancer Res, 2019,25(4):1248-1260. DOI: 10.1158/1078-0432.Ccr-18-1640.
doi: 10.1158/1078-0432.CCR-18-1640 pmid: 30352902 |
[30] |
Rotow JK, Gui P, Wu W, et al. Co-occurring alterations in the RAS-MAPK pathway limit response to MET inhibitor treatment in MET exon 14 skipping mutation-positive lung cancer[J]. Clin Cancer Res, 2020,26(2):439-449. DOI: 10.1158/1078-0432.Ccr-19-1667.
doi: 10.1158/1078-0432.CCR-19-1667 |
[31] |
Jamme P, Fernandes M, Copin MC, et al. Alterations in the PI3K pathway drive resistance to MET inhibitors in NSCLC harboring MET exon 14 skipping mutations[J]. J Thorac Oncol, 2020,15(5):741-751. DOI: 10.1016/j.jtho.2020.01.027.
doi: 10.1016/j.jtho.2020.01.027 |
[32] |
Jin W, Shan B, Liu H, et al. Acquired mechanism of crizotinib resistance in NSCLC with MET exon 14 skipping[J]. J Thorac Oncol, 2019,14(7):e137-e139. DOI: 10.1016/j.jtho.2019.04.021.
doi: 10.1016/j.jtho.2019.04.021 |
[33] |
Ou SI, Young L, Schrock AB, et al. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping[J]. J Thorac Oncol, 2017,12(1):137-140. DOI: 10.1016/j.jtho.2016.09.119.
doi: 10.1016/j.jtho.2016.09.119 |
[34] |
Engstrom LD, Aranda R, Lee M, et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET exon 14 mutations and overcomes mutation-mediated resistance to type Ⅰ MET inhibitors in nonclinical models[J]. Clin Cancer Res, 2017,23(21):6661-6672. DOI: 10.1158/1078-0432.Ccr-17-1192.
doi: 10.1158/1078-0432.CCR-17-1192 pmid: 28765324 |
[35] |
Klempner SJ, Borghei A, Hakimian B, et al. Intracranial activity of cabozantinib in MET exon 14-positive NSCLC with brain metastases[J]. J Thorac Oncol, 2017,12(1):152-156. DOI: 10.1016/j.jtho.2016.09.127.
doi: S1556-0864(16)31079-6 pmid: 27693535 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[3] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[4] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[5] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[6] | 顾芳萌, 徐晨阳, 雷大鹏. 人工智能辅助电子喉镜检查在喉癌及喉癌前病变诊治中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 303-307. |
[7] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[8] | 王昆, 周中新, 臧其威. 血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[9] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[10] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[11] | 胡婷婷, 王越华. 电子鼻与线虫鼻——新型早期癌症筛查工具[J]. 国际肿瘤学杂志, 2024, 51(4): 223-226. |
[12] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[13] | 严爱婷, 王翠竹, 刘春桂, 鲁小敏. 卡瑞利珠单抗与信迪利单抗治疗晚期非小细胞肺癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(3): 137-142. |
[14] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[15] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||