国际肿瘤学杂志 ›› 2020, Vol. 47 ›› Issue (10): 634-636.doi: 10.3760/cma.j.cn371439-20200401-00093
收稿日期:
2020-04-01
修回日期:
2020-04-11
出版日期:
2020-10-08
发布日期:
2020-11-20
通讯作者:
吴建臣
E-mail:wujianchen0524@163.com
Received:
2020-04-01
Revised:
2020-04-11
Online:
2020-10-08
Published:
2020-11-20
Contact:
Wu Jianchen
E-mail:wujianchen0524@163.com
摘要:
前列腺癌细胞来源的外泌体可直接或间接促进前列腺癌细胞的生长、转移,其可作为前列腺癌诊断及预后评估的标志物,并参与前列腺癌的临床治疗,如靶向治疗、耐药性评估、肿瘤疫苗制备等。随着各项研究的开展及技术进步,外泌体将在前列腺癌的诊治中发挥巨大作用。
张佳伟, 吴建臣. 外泌体在前列腺癌中的应用[J]. 国际肿瘤学杂志, 2020, 47(10): 634-636.
Zhang Jiawei, Wu Jianchen. Application of exosomes in prostates cancer[J]. Journal of International Oncology, 2020, 47(10): 634-636.
[1] | 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019,41(1):19-28. DOI: 10.3760/cma.j.issn.0253-3766.2019.01.005. |
[2] |
DeSantis CE, Miller KD, Goding Sauer A, et al. Cancer statistics for African Americans, 2019[J]. CA Cancer J Clin, 2019,69(3):211-233. DOI: 10.3322/caac.21555.
doi: 10.3322/caac.21555 pmid: 30762872 |
[3] |
Kalra H, Drummen GP, Mathivanan S. Focus on extracellular vesicles: introducing the next small big thing[J]. Int J Mol Sci, 2016,17(2):170. DOI: 10.3390/ijms17020170.
doi: 10.3390/ijms17020170 pmid: 26861301 |
[4] |
Shiao SL, Chu GC, Chung LW. Regulation of prostate cancer progression by the tumor microenvironment[J]. Cancer Lett, 2016,380(1):340-348. DOI: 10.1016/j.canlet.2015.12.022.
doi: 10.1016/j.canlet.2015.12.022 pmid: 26828013 |
[5] |
Hosseini-Beheshti E, Choi W, Weiswald LB, et al. Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment[J]. Oncotarget, 2016,7(12):14639-14658. DOI: 10.18632/oncotarget.7052.
doi: 10.18632/oncotarget.7052 pmid: 26840259 |
[6] |
Paggetti J, Haderk F, Seiffert M, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition ofstromal cells into cancer-associated fibroblasts[J]. Blood, 2015,126(9):1106-1117. DOI: 10.1182/blood-2014-12-618025.
doi: 10.1182/blood-2014-12-618025 pmid: 26100252 |
[7] |
Karlsson T, Lundholm M, Widmark A, et al. Tumor cell-derived exosomes from theprostate cancer cell line tramp-c1 impair osteoclast formation and differentiation[J]. PLoS One, 2016,11(11):e0166284. DOI: 10.1371/journal.pone.0166284.
doi: 10.1371/journal.pone.0166284 pmid: 27832183 |
[8] |
Benites BD, Alvarez MC, Saad STO. Small particles, big effects: the interplay between exosomes and dendritic cells in antitumor immunity and immunotherapy[J]. Cells, 2019, 8(12). pii: E1648. DOI: 10.3390/cells8121648.
doi: 10.3390/cells8121640 pmid: 31847428 |
[9] |
Shushkova NA, Novikova SE, Zgoda VG. Exosomes of malignant tumors: prospects of omics diagnostics[J]. Biomed Khim, 2019,65(6):457-467. DOI: 10.18097/PBMC20196506457.
doi: 10.18097/PBMC20196506457 pmid: 31876516 |
[10] |
Bryant RJ, Pawlowski T, Catto JW, et al. Changes in circulating microRNA levels associated with prostate cancer[J]. Br J Cancer, 2012,106(4):768-774. DOI: 10.1038/bjc.2011.595.
doi: 10.1038/bjc.2011.595 pmid: 22240788 |
[11] |
Li Z, Ma YY, Wang J, et al. Exosomal microRNA-141 is upregu-lated in the serum of prostate cancer patients[J]. Onco Targets Ther, 2015,9:139-148. DOI: 10.2147/OTT.S95565.
doi: 10.2147/OTT.S95565 pmid: 26770063 |
[12] |
De Palma G, Di Lorenzo VF, Krol S, et al. Urinary exosomal shuttle RNA: promising cancer diagnosis biomarkers of lower urinary tract[J]. Int J Biol Markers, 2019,34(2):101-107. DOI: 10.1177/1724600819827023.
doi: 10.1177/1724600819827023 pmid: 30862241 |
[13] |
Rodríguez M, Bajo-Santos C, Hessvik NP, et al. Identification of non-invasive mirnas biomarkers for prostate cancer by deepsequen-cing analysis of urinary exosomes[J]. Mol Cancer, 2017,16(1):156. DOI: 10.1186/s12943-017-0726-4.
doi: 10.1186/s12943-017-0726-4 pmid: 28982366 |
[14] |
Hosseini-Beheshti E, Pham S, Adomat H, et al. Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes[J]. Mol Cell Proteomics, 2012,11(10):863-885. DOI: 10.1074/mcp.M111.014845.
doi: 10.1074/mcp.M111.014845 |
[15] |
Wang L, Skotland T, Berge V, et al. Exosomal proteins as prostate cancer biomarkers in urine: from mass spectrometry discovery to immunoassay-based validation[J]. Eur J Pharm Sci, 2017,98:80-85. DOI: 10.1016/j.ejps.2016.09.023.
doi: 10.1016/j.ejps.2016.09.023 pmid: 27664330 |
[16] |
Endzeliņš E, Berger A, Melne V, et al. Detection of circulating mirnas: comparative analysis of extracellular vesicle-incorporated mirnas and cell-free mirnas in whole plasma of prostate cancer patients[J]. BMC Cancer, 2017,17(1):730. DOI: 10.1186/s12885-017-3737-z.
doi: 10.1186/s12885-017-3737-z pmid: 29121858 |
[17] |
Huang X, Yuan T, Liang M, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer[J]. Eur Urol, 2015,67(1):33-41. DOI: 10.1016/j.eururo.2014.07.035.
doi: 10.1016/j.eururo.2014.07.035 pmid: 25129854 |
[18] | Wani S, Kaul D, Mavuduru RS, et al. Urinary-exosomal mir-2909: a novel pathognomonic trait of prostate cancer severity[J]. J Biote-chnol, 2017,259:135-139. DOI: 10.1016/j.jbiotec.2017.07.029. |
[19] |
Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumorselective drug delivery, low therapeutic efficacy and unsustainable costs[J]. Clin Transl Med, 2018,7(1):11. DOI: 10.1186/s40169-018-0185-6.
doi: 10.1186/s40169-018-0185-6 pmid: 29541939 |
[20] |
H Rashed M, Bayraktar E, K Helal G, et al. Exosomes: from garbage bins to promising therapeutic targets[J]. Int J Mol Sci, 2017, 18(3). pii: E538. DOI: 10.3390/ijms18030538.
pmid: 28335433 |
[21] |
Saari H, Lázaro-Ibáezñ E, Viitala T, et al. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells[J]. J Control Release, 2015,220(Pt B):727-737. DOI: 10.1016/j.jconrel.2015.09.031.
doi: 10.1016/j.jconrel.2015.09.031 pmid: 26390807 |
[22] |
Oskouie MN, Aghili Moqhaddam NS, Butler AE, et al. Therapeutic use of curcumin-encapsulated and curcumin-primed exosomes[J]. J Cell Physiol, 2019,234(6):8182-8191. DOI: 10.1002/jcp.27615.
doi: 10.1002/jcp.27615 pmid: 30317632 |
[23] |
Yim N, Ryu SW, Choi K, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module[J]. Nat Commun, 2016,7:12277. DOI: 10.1038/ncomms12277.
doi: 10.1038/ncomms12277 pmid: 27447450 |
[24] |
Morishita M, Takahashi Y, Matsumoto A, et al. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cellderived exosomes with immunostimulatory CpG DNA[J]. Biomaterials, 2016,111:55-65. DOI: 10.1016/j.biomaterials.2016.09.031.
doi: 10.1016/j.biomaterials.2016.09.031 pmid: 27723556 |
[25] |
Kato T, Mizutani K, Kameyama K, et al. Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer[J]. Urol Oncol, 2015, 33(9): 385, e15-e20. DOI: 10.1016/j.urolonc.2015.04.019.
doi: 10.1016/j.urolonc.2015.04.019 |
[26] |
Li J, Yang X, Guan H, et al. Exosome-derived microRNAs contri-bute to prostate cancer chemoresistance[J]. Int J Oncol, 2016,49(2):838-846. DOI: 10.3892/ijo.2016.3560.
doi: 10.3892/ijo.2016.3560 pmid: 27278879 |
[27] |
Boukovala M, Spetsieris N, Weldon JA, et al. A candidate androgen signalling signature predictive of response to abiraterone acetate in men with metastatic castration-resistant prostate cancer[J]. Eur J Cancer, 2020,127:67-75. DOI: 10.1016/j.ejca.2019.12.027.
doi: 10.1016/j.ejca.2019.12.027 pmid: 31986451 |
[1] | 刘博翰, 黄俊星. 液体活检技术在食管鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 105-108. |
[2] | 赵鑫, 范学武, 田龙, 胡逸民. 三维超声在前列腺癌图像引导放疗中的应用与评价研究[J]. 国际肿瘤学杂志, 2024, 51(1): 43-49. |
[3] | 张渊, 白芷玉, 李琪, 冯勤梅. 外泌体在恶性肿瘤中的研究现状[J]. 国际肿瘤学杂志, 2023, 50(8): 484-488. |
[4] | 金明, 甄书青, 王彦巧, 申红霞, 张爱民, 回丽妹. 丙泊酚对前列腺癌DU145细胞恶性生物学行为的影响及其机制[J]. 国际肿瘤学杂志, 2022, 49(8): 453-458. |
[5] | 李洪宇, 乌新林. 外泌体与结直肠癌肝转移[J]. 国际肿瘤学杂志, 2022, 49(12): 749-753. |
[6] | 王文浩, 孙希瑞, 刘锦, 孙秀梅. 肿瘤相关成纤维细胞在乳腺癌发生与发展中的作用[J]. 国际肿瘤学杂志, 2022, 49(10): 615-618. |
[7] | 张琬琛, 徐加杰, 张李卓, 葛明华. 外泌体-环状RNA在肿瘤诊治中的临床意义[J]. 国际肿瘤学杂志, 2021, 48(9): 549-552. |
[8] | 张永丽, 张若佳, 范焕彩, 葛鲁娜, 王林. TXNDC5-Prx2途径对前列腺癌细胞耐药性的调控[J]. 国际肿瘤学杂志, 2021, 48(8): 473-478. |
[9] | 杜霄, 周菊英. 局限性前列腺癌的立体定向放疗[J]. 国际肿瘤学杂志, 2021, 48(5): 313-316. |
[10] | 张小飞, 胡建鹏, 崔飞伦. 长非编码RNA在前列腺癌中的作用机制[J]. 国际肿瘤学杂志, 2021, 48(2): 117-120. |
[11] | 刘振华. 前列腺癌治疗的最新进展:肿瘤精准治疗时代下转移性去势抵抗性前列腺癌患者的管理[J]. 国际肿瘤学杂志, 2021, 48(11): 702-704. |
[12] | 吉春冬, 刘凯, 冯越, 汪飞, 杨军, 薛荣波. PSAMR联合PI-RADS v2评分对高级别前列腺癌的预测价值[J]. 国际肿瘤学杂志, 2020, 47(12): 723-727. |
[13] | 宋全, 丁宁玲, 许英, 曹凯悦, 周素芳, 赵爱琴, 潘韵芝, 马赛. 肝癌干细胞外泌体miR-196a增强肝癌细胞对多柔比星的耐药性[J]. 国际肿瘤学杂志, 2020, 47(10): 585-592. |
[14] | 曹黎霞,史振东,刘晶晶,张瑾. 外泌体miRNA作为乳腺癌生物标志物的临床应用[J]. 国际肿瘤学杂志, 2019, 46(7): 423-426. |
[15] | 张芳雍, 吴帆. 外泌体非编码RNA在肝癌液体活检中的研究进展[J]. 国际肿瘤学杂志, 2019, 46(6): 378-381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||