[1] |
Loeffler JS, Durante M. Charged particle therapy—optimization, challenges and future directions[J]. Nat Rev Clin Oncol, 2013, 10(7): 411-424. DOI: 10.1038/nrclinonc.2013.79.
pmid: 23689752
|
[2] |
Vai A, Molinelli S, Rossi E, et al. Proton radiation therapy for nasopharyngeal cancer patients: dosimetric and NTCP evaluation supporting clinical decision[J]. Cancers (Basel), 2022, 14(5): 1109. DOI:10.3390/cancers14051109.
|
[3] |
Moreno AC, Frank SJ, Garden AS, et al. Intensity modulated proton therapy (IMPT)—the future of IMRT for head and neck cancer[J]. Oral Oncol, 2019, 88: 66-74. DOI: 10.1016/j.oraloncology.2018.11.015.
pmid: 30616799
|
[4] |
Doyen J, Falk AT, Floquet V, et al. Proton beams in cancer treatments: clinical outcomes and dosimetric comparisons with photon therapy[J]. Cancer Treat Rev, 2016, 43: 104-112. DOI: 10.1016/j.ctrv.2015.12.007.
pmid: 26827698
|
[5] |
Ma N, Ming X, Chen J, et al. Dosimetric rationale and preliminary experience in proton plus carbon-ion radiotherapy for esophageal carcinoma: a retrospective analysis[J]. Radiat Oncol, 2023, 18(1): 195. DOI:10.1186/s13014-023-02371-9.
pmid: 38041122
|
[6] |
Huang H, Gao X, Li Q, et al. Dosimetric comparison between stereotactic body radiotherapy and carbon-ion radiation therapy for prostate cancer[J]. Quant Imaging Med Surg, 2023, 13(10): 6965-6978. DOI: 10.21037/qims-23-340.
|
[7] |
Byun HK, Han MC, Yang K, et al. Physical and biological characteristics of particle therapy for oncologists[J]. Cancer Res Treat, 2021, 53(3): 611-620. DOI: 10.4143/crt.2021.066.
pmid: 34139805
|
[8] |
Engwall E, Glimelius L, Hynning E. Effectiveness of different rescanning techniques for scanned proton radiotherapy in lung cancer patients[J]. Phys Med Biol, 2018, 63(9): 095006. DOI:10.1088/1361-6560/aabb7b.
|
[9] |
Paganetti H, Botas P, Sharp GC, et al. Adaptive proton therapy[J]. Phys Med Biol, 2021, 66(22): 10. DOI:10.1088/1361-6560/ac344f.
|
[10] |
Hagiwara Y, Bhattacharyya T, Matsufuji N, et al. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer[J]. Clin Transl Radiat Oncol, 2019, 21: 19-24. DOI: 10.1016/j.ctro.2019.11.002.
|
[11] |
Matsumoto S, Lee SH, Imai R, et al. Unresectable chondrosarcomas treated with carbon ion radiotherapy: relationship between dose-averaged linear energy transfer and local recurrence[J]. Anticancer Res, 2020, 40(11): 6429-6435. DOI: 10.21873/anticanres.14664.
pmid: 33109581
|
[12] |
Molinelli S, Magro G, Mairani A, et al. How LEM-based RBE and dose-averaged LET affected clinical outcomes of sacral chordoma patients treated with carbon ion radiotherapy[J]. Radiother Oncol, 2021, 163: 209-214. DOI: 10.1016/j.radonc.2021.08.024.
pmid: 34506829
|
[13] |
Bassler N, Jäkel O, Søndergaard CS, et al. Dose-and LET-painting with particle therapy[J]. Acta Oncol, 2010, 49(7): 1170-1176. DOI: 10.3109/0284186X.2010.510640.
pmid: 20831510
|
[14] |
Malinen E, Søvik Å. Dose or 'LET' painting—what is optimal in particle therapy of hypoxic tumors?[J]. Acta Oncol, 2015, 54(9): 1614-1622. DOI: 10.3109/0284186X.2015.1062540.
pmid: 26198655
|
[15] |
Hu J, Huang Q, Gao J, et al. Mixed photon and carbon-ion beam radiotherapy in the management of non-metastatic nasopharyngeal carcinoma[J]. Front Oncol, 2021, 11: 653050. DOI: 10.3389/fonc.2021.653050.
|
[16] |
Liao Z, Lee JJ, Komaki R, et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small-cell lung cancer[J]. J Clin Oncol, 2018, 36(18): 1813-1822. DOI: 10.1200/JCO.2017.74.0720.
pmid: 29293386
|
[17] |
Frank SJ, Busse P, Rosenthal DI, et al. Phase Ⅲ randomized trial of intensity-modulated proton therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for the treatment of head and neck oropharyngeal carcinoma (OPC)[J]. J Clin Oncol, 2024, 42(16 Suppl): 6006. DOI:10.1200/JCO.2024.42.16_suppl.6006.
|
[18] |
Sokol O, Durante M. Carbon ions for hypoxic tumors: are we making the most of them?[J]. Cancers (Basel), 2023, 15(18): 4494. DOI:10.3390/cancers15184494.
|
[19] |
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy[J]. Strahlenther Onkol, 2023, 199(12): 1225-1241. DOI: 10.1007/s00066-023-02158-7.
pmid: 37872399
|
[20] |
Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I, et al. Immunological mechanisms responsible for radiation-induced abscopal effect[J]. Trends Immunol, 2018, 39(8): 644-655. DOI: 10.1016/j.it.2018.06.001.
pmid: 30001871
|
[21] |
Ngwa W, Irabor OC, Schoenfeld JD, et al. Using immunotherapy to boost the abscopal effect[J]. Nat Rev Cancer, 2018, 18(5): 313-322. DOI: 10.1038/nrc.2018.6.
pmid: 29449659
|
[22] |
Zhang Z, Liu X, Chen D, et al. Radiotherapy combined with immunotherapy: the dawn of cancer treatment[J]. Signal Transduct Target Ther, 2022, 7(1): 258. DOI:10.1038/s41392-022-01102-y.
|
[23] |
Takahashi Y, Yasui T, Minami K, et al. Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma[J]. Oncotarget, 2019, 10(6): 633-646. DOI: 10.18632/oncotarget.26551.
pmid: 30774761
|
[24] |
Helm A, Tinganelli W, Simoniello P, et al. Reduction of lung metastases in a mouse osteosarcoma model treated with carbon ions and immune checkpoint inhibitors[J]. Int J Radiat Oncol Biol Phys, 2021, 109(2): 594-602. DOI: 10.1016/j.ijrobp.2020.09.041.
|
[25] |
Nie M, Chen L, Zhang J, et al. Pure proton therapy for skull base chordomas and chondrosarcomas: a systematic review of clinical experience[J]. Front Oncol, 2022: 1016857. DOI: 10.3389/fonc.2022.1016857.
|
[26] |
Guan X, Gao J, Hu J, et al. The preliminary results of proton and carbon ion therapy for chordoma and chondrosarcoma of the skull base and cervical spine[J]. Radiat Oncol, 2019, 14(1): 206. DOI:10.1186/s13014-019-1407-9.
pmid: 31752953
|
[27] |
Ioakeim-Ioannidou M, Niemierko A, Kim DW, et al. Surgery and proton radiation therapy for pediatric base of skull chordomas: long-term clinical outcomes for 204 patients[J]. Neuro Oncol, 2023, 25(9): 1686-1697. DOI: 10.1093/neuonc/noad068.
|
[28] |
Hu J, Huang Q, Gao J, et al. Clinical outcomes of carbon-ion radiotherapy for patients with locoregionally recurrent nasopharyngeal carcinoma[J]. Cancer, 2020, 126(23): 5173-5183. DOI: 10.1002/cncr.33197.
|
[29] |
Greenberger BA, Yock TI. The role of proton therapy in pediatric malignancies: recent advances and future directions[J]. Semin Oncol, 2020, 47(1): 8-22. DOI: 10.1053/j.seminoncol.2020.02.002.
pmid: 32139101
|
[30] |
Mohan R, Grosshans D. Proton therapy-present and future[J]. Adv Drug Deliv Rev, 2017, 109: 26-44. DOI: 10.1016/j.addr.2016.11.006.
|
[31] |
Verma V, Mishra MV, Mehta MP. A systematic review of the cost and cost-effectiveness studies of proton radiotherapy[J]. Cancer, 2016, 122(10): 1483-1501. DOI: 10.1002/cncr.29882.
pmid: 26828647
|
[32] |
Mailhot Vega RB, Ishaq O, Raldow A, et al. Establishing cost-effective allocation of proton therapy for breast irradiation[J]. Int J Radiat Oncol Biol Phys, 2016, 95(1): 11-18. DOI: 10.1016/j.ijrobp.2016.02.031.
|
[33] |
Mutter RW, Choi JI, Jimenez RB, et al. Proton therapy for breast cancer: a consensus statement from the particle therapy cooperative group breast cancer subcommittee[J]. Int J Radiat Oncol Biol Phys, 2021, 111(2): 337-359. DOI: 10.1016/j.ijrobp.2021.05.110.
|