国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (9): 553-557.doi: 10.3760/cma.j.cn371439-20230410-00106
收稿日期:
2023-04-10
修回日期:
2023-04-28
出版日期:
2023-09-08
发布日期:
2023-10-26
通讯作者:
彭敏
E-mail:mpeng320@whu.edu.cn
Chen Xinyi, Weng Yiming, Wei Jiayan, Wang Jinsong, Peng Min()
Received:
2023-04-10
Revised:
2023-04-28
Online:
2023-09-08
Published:
2023-10-26
Contact:
Peng Min
E-mail:mpeng320@whu.edu.cn
摘要:
随着对肿瘤微环境与免疫治疗间复杂相互作用的认识,免疫检查点在头颈部鳞状细胞癌(HNSCC)治疗中的作用越来越受到关注。以程序性死亡蛋白-1(PD-1)/程序性死亡蛋白配体-1(PD-L1)、细胞毒性T淋巴细胞相关蛋白-4(CTLA-4)、T细胞免疫球蛋白黏蛋白分子-3(TIM-3)为靶点的免疫检查点抑制剂,如帕博利珠单抗、度伐利尤单抗、特瑞普利单抗、伊匹木单抗、LY3321367等,可作为单一疗法和联合疗法应用于复发或转移性HNSCC的治疗。进一步研究免疫检查点抑制剂在临床治疗中的疗效与安全性,有望为复发或转移性HNSCC患者的治疗提供更有效的策略。
陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏. 免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557.
Chen Xinyi, Weng Yiming, Wei Jiayan, Wang Jinsong, Peng Min. Advances in immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma[J]. Journal of International Oncology, 2023, 50(9): 553-557.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[2] | Ruffin AT, Li H, Vujanovic L, et al. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment[J]. Nat Rev Cancer, 2023, 23(3): 173-188. DOI: 10.1038/s41568-022-00531-9. |
[3] |
Wang G, Zhang M, Cheng M, et al. Tumor microenvironment in head and neck squamous cell carcinoma: functions and regulatory mechanisms[J]. Cancer Lett, 2021, 507: 55-69. DOI: 10.1016/j.canlet.2021.03.009.
pmid: 33741424 |
[4] | Yi M, Niu M, Xu L, et al. Regulation of PD-L1 expression in the tumor microenvironment[J]. J Hematol Oncol, 2021, 14(1): 10. DOI: 10.1186/s13045-020-01027-5. |
[5] | Dai X, Gao Y, Wei W. Post-translational regulations of PD-L1 and PD-1: mechanisms and opportunities for combined immunotherapy[J]. Semin Cancer Biol, 2022, 85: 246-252. DOI: 10.1016/j.semcancer.2021.04.002. |
[6] | Carlisle JW, Steuer CE, Owonikoko TK, et al. An update on the immune landscape in lung and head and neck cancers[J]. CA Cancer J Clin, 2020, 70(6): 505-517. DOI: 10.3322/caac.21630. |
[7] | Botticelli A, Cirillo A, Strigari L, et al. Anti-PD-1 and anti-PD-L1 in head and neck cancer: a network meta-analysis[J]. Front Immunol, 2021, 12: 705096. DOI: 10.3389/fimmu.2021.705096. |
[8] | Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2016, 375(19): 1856-1867. DOI: 10.1056/NEJMoa1602252. |
[9] |
Gillison ML, Blumenschein G, Fayette J, et al. Long-term outcomes with nivolumab as first-line treatment in recurrent or metastatic head and neck cancer: subgroup analysis of CheckMate 141[J]. Oncologist, 2022, 27(2): e194-e198. DOI: 10.1093/oncolo/oyab036.
pmid: 35641218 |
[10] | Chung CH, Li J, Steuer CE, et al. Phase Ⅱ multi-institutional clinical trial result of concurrent cetuximab and nivolumab in recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2022, 28(11): 2329-2338. DOI: 10.1158/1078-0432.CCR-21-3849. |
[11] |
Wang H, Wang B, Wei J, et al. Molecular mechanisms underlying increased radiosensitivity in human papillomavirus-associated oropharyngeal squamous cell carcinoma[J]. Int J Biol Sci, 2020, 16(6): 1035-1043. DOI: 10.7150/ijbs.40880.
pmid: 32140071 |
[12] | Griso AB, Acero-Riaguas L, Castelo B, et al. Mechanisms of cisplatin resistance in HPV negative head and neck squamous cell carcinomas[J]. Cells, 2022, 11(3): 561. DOI: 10.3390/cells11030561. |
[13] | de Castro G Jr, Kudaba I, Wu YL, et al. Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and programmed death ligand-1 tumor proportion score≥1% in the KEYNOTE-042 study[J]. J Clin Oncol, 2023, 41(11): 1986-1991. DOI: 10.1200/JCO.21.02885. |
[14] | Eskander RN, Sill MW, Beffa L, et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer[J]. N Engl J Med, 2023, 388(23): 2159-2170. DOI: 10.1056/NEJMoa2302312. |
[15] | Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial[J]. Lancet Oncol, 2016, 17(7): 956-965. DOI: 10.1016/S1470-2045(16)30066-3. |
[16] |
Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study[J]. Lancet, 2019, 394(10212): 1915-1928. DOI: 10.1016/S0140-6736(19)32591-7.
pmid: 31679945 |
[17] |
Mitchell TC, Hamid O, Smith DC, et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase Ⅰ results from a multicenter, open-label phase Ⅰ/Ⅱ trial (ECHO-202/KEYNOTE-037)[J]. J Clin Oncol, 2018, 36(32): 3223-3230. DOI: 10.1200/JCO.2018.78.9602.
pmid: 30265610 |
[18] |
Zandberg DP, Algazi AP, Jimeno A, et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: results from a single-arm, phase Ⅱ study in patients with ≥25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy[J]. Eur J Cancer, 2019, 107: 142-152. DOI: 10.1016/j.ejca.2018.11.015.
pmid: 30576970 |
[19] |
Siu LL, Even C, Mesía R, et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial[J]. JAMA Oncol, 2019, 5(2): 195-203. DOI: 10.1001/jamaoncol.2018.4628.
pmid: 30383184 |
[20] |
Ferris RL, Haddad R, Even C, et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase Ⅲ study[J]. Ann Oncol, 2020, 31(7): 942-950. DOI: 10.1016/j.annonc.2020.04.001.
pmid: 32294530 |
[21] | Huang X, Liu Q, Zhong G, et al. Neoadjuvant toripalimab combined with gemcitabine and cisplatin in resectable locally advanced head and neck squamous cell carcinoma (NeoTGP01): an open label, single-arm, phase Ⅰb clinical trial[J]. J Exp Clin Cancer Res, 2022, 41(1): 300. DOI: 10.1186/s13046-022-02510-2. |
[22] | Xu Y, Gao Z, Hu R, et al. PD-L2 glycosylation promotes immune evasion and predicts anti-EGFR efficacy[J]. J Immunother Cancer, 2021, 9(10): e002699. DOI: 10.1136/jitc-2021-002699. |
[23] | Park JS, Gazzaniga FS, Wu M, et al. Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance[J]. Nature, 2023, 617(7960): 377-385. DOI: 10.1038/s41586-023-06026-3. |
[24] | Watanabe T, Ishino T, Ueda Y, et al. Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity[J]. Cancer Sci, 2023, 114(5): 1859-1870. DOI: 10.1111/cas.15756. |
[25] | Zappasodi R, Serganova I, Cohen IJ, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours[J]. Nature, 2021, 591(7851): 652-658. DOI: 10.1038/s41586-021-03326-4. |
[26] | Haddad RI, Harrington K, Tahara M, et al. Nivolumab plus ipilimumab versus EXTREME regimen as first-line treatment for recurrent/metastatic squamous cell carcinoma of the head and neck: the final results of CheckMate 651[J]. J Clin Oncol, 2023, 41(12): 2166-2180. DOI: 10.1200/JCO.22.00332. |
[27] | Psyrri A, Fayette J, Harrington K, et al. Durvalumab with or without tremelimumab versus the EXTREME regimen as first-line treatment for recurrent or metastatic squamous cell carcinoma of the head and neck: KESTREL, a randomized, open-label, phase Ⅲ study[J]. Ann Oncol, 2023, 34(3): 262-274. DOI: 10.1016/j.annonc.2022.12.008. |
[28] | Gardner A, de Mingo Pulido Á, Hänggi K, et al. TIM-3 blockade enhances IL-12-dependent antitumor immunity by promoting CD8+ T cell and XCR1+dendritic cell spatial co-localization[J]. J Immunother Cancer, 2022, 10(1): e003571. DOI: 10.1136/jitc-2021-003571. |
[29] | Wuerdemann N, Pütz K, Eckel H, et al. LAG-3, TIM-3 and VISTA expression on tumor-infiltrating lymphocytes in oropharyngeal squamous cell carcinoma-potential biomarkers for targeted therapy concepts[J]. Int J Mol Sci, 2020, 22(1): 379. DOI: 10.3390/ijms22010379. |
[30] |
Harding JJ, Moreno V, Bang YJ, et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ⅰa/b study of LY3321367 with or without an anti-PD-L1 antibody[J]. Clin Cancer Res, 2021, 27(8): 2168-2178. DOI: 10.1158/1078-0432.CCR-20-4405.
pmid: 33514524 |
[31] |
Curigliano G, Gelderblom H, Mach N, et al. Phase Ⅰ/Ⅰb clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors[J]. Clin Cancer Res, 2021, 27(13): 3620-3629. DOI: 10.1158/1078-0432.CCR-20-4746.
pmid: 33883177 |
[32] | Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape[J]. J Immunother Cancer, 2020, 8(1): e000911. DOI: 10.1136/jitc-2020-000911. |
[33] | Sun F, Guo ZS, Gregory AD, et al. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer[J]. J Immunother Cancer, 2020, 8(1): e000294. DOI: 10.1136/jitc-2019-000294. |
[34] |
Maruhashi T, Sugiura D, Okazaki IM, et al. Binding of LAG-3 to stable peptide-MHC class Ⅱ limits T cell function and suppresses autoimmunity and anti-cancer immunity[J]. Immunity, 2022, 55(5): 912-924.e8. DOI: 10.1016/j.immuni.2022.03.013.
pmid: 35413245 |
[35] | Jiang H, Ni H, Zhang P, et al. PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity[J]. Oncoimmunology, 2021, 10(1): 1943180. DOI: 10.1080/2162402X.2021.1943180. |
[36] | Clay TD, Majem M, Felip E, et al. Results from a phase Ⅱ study of eftilagimod alpha (soluble LAG-3 protein) and pembrolizumab in patients with PD-L1 unselected metastatic non-small cell lung carcinoma[J]. J Clin Oncol, 2021, 39(15_suppl): 9046. DOI: 10.1200/JCO.2021.39.15_suppl.9046. |
[37] | Schöffski P, Tan DSW, Martín M, et al. Phase Ⅰ/Ⅱ study of the LAG-3 inhibitor ieramilimab (LAG525)±anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies[J]. J Immunother Cancer, 2022, 10(2): e003776. DOI: 10.1136/jitc-2021-003776. |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. |
[4] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[5] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[6] | 陈琦, 徐晨阳, 王寅, 雷大鹏. 高光谱成像在头颈部肿瘤诊疗中的应用现状[J]. 国际肿瘤学杂志, 2024, 51(5): 298-302. |
[7] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[8] | 王昆, 周中新, 臧其威. 血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[9] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[10] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[11] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. |
[12] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智. CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[13] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[14] | 严爱婷, 王翠竹, 刘春桂, 鲁小敏. 卡瑞利珠单抗与信迪利单抗治疗晚期非小细胞肺癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(3): 137-142. |
[15] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||