国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (5): 296-301.doi: 10.3760/cma.j.cn371439-20220309-00055
收稿日期:
2022-03-09
修回日期:
2022-04-02
出版日期:
2022-05-08
发布日期:
2022-05-31
通讯作者:
李小江,孙娜
E-mail:zxqlovelxj@126.com
基金资助:
Zhang Jingxian1,2, Yi Dan1,2, Li Xiaojiang1,2()
Received:
2022-03-09
Revised:
2022-04-02
Online:
2022-05-08
Published:
2022-05-31
Contact:
Li Xiaojiang
E-mail:zxqlovelxj@126.com
Supported by:
摘要:
抗体偶联药物(ADC)以其抗体靶向性的独特优势,克服了传统化疗和靶向治疗的局限性,并在肺癌治疗领域取得了突破性的成绩。目前ADC在非小细胞肺癌中的研究主要涉及靶点有HER2、HER3、TROP2、MET、CEACAM5,多种药物已通过严格的临床试验,并表现出良好的安全性和有效性,为肺癌个性化治疗提供了理论依据。
张静娴, 易丹, 李小江. 抗体偶联药物在非小细胞肺癌中的应用[J]. 国际肿瘤学杂志, 2022, 49(5): 296-301.
Zhang Jingxian, Yi Dan, Li Xiaojiang. Application of antibody-drug conjugates in the treatment of non-small cell lung cancer[J]. Journal of International Oncology, 2022, 49(5): 296-301.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy[J]. J Hematol Oncol, 2019, 12(1): 134. DOI: 10.1186/s13045-019-0818-2.
doi: 10.1186/s13045-019-0818-2 |
[3] |
Wolska-Washer A, Robak T. Safety and tolerability of antibody-drug conjugates in cancer[J]. Drug Saf, 2019, 42(2): 295-314. DOI: 10.1007/s40264-018-0775-7.
doi: 10.1007/s40264-018-0775-7 |
[4] |
Riudavets M, Sullivan I, Abdayem P, et al. Targeting HER2 in non-small-cell lung cancer (NSCLC): a glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations[J]. ESMO Open, 2021, 6(5): 100260. DOI: 10.1016/j.esmoop.2021.100260.
doi: 10.1016/j.esmoop.2021.100260 |
[5] |
Arcila ME, Chaft JE, Nafa K, et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas[J]. Clin Cancer Res, 2012, 18(18): 4910-4918. DOI: 10.1158/1078-0432.CCR-12-0912.
doi: 10.1158/1078-0432.CCR-12-0912 pmid: 22761469 |
[6] |
Burris HA 3rd, Rugo HS, Vukelja SJ, et al. Phase Ⅱ study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy[J]. J Clin Oncol, 2011, 29(4): 398-405. DOI: 10.1200/JCO.2010.29.5865.
doi: 10.1200/JCO.2010.29.5865 |
[7] |
Montemurro F, Ellis P, Anton A, et al. Safety of trastuzumab emtansine (T-DM1) in patients with HER2-positive advanced breast cancer: primary results from the KAMILLA study cohort 1[J]. Eur J Cancer, 2019, 109: 92-102. DOI: 10.1016/j.ejca.2018.12.022.
doi: S0959-8049(18)31577-6 pmid: 30708264 |
[8] |
Cretella D, Saccani F, Quaini F, et al. Trastuzumab emtansine is active on HER-2 overexpressing NSCLC cell lines and overcomes gefitinib resistance[J]. Mol Cancer, 2014, 13: 143. DOI: 10.1186/1476-4598-13-143.
doi: 10.1186/1476-4598-13-143 pmid: 24898067 |
[9] |
Peters S, Stahel R, Bubendorf L, et al. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing metastatic non-small cell lung cancer: efficacy, safety, and biomarkers[J]. Clin Cancer Res, 2019, 25(1): 64-72. DOI: 10.1158/1078-0432.CCR-18-1590.
doi: 10.1158/1078-0432.CCR-18-1590 |
[10] |
Li BT, Shen R, Buonocore D, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase Ⅱ basket trial[J]. J Clin Oncol, 2018, 36(24): 2532-2537. DOI: 10.1200/JCO.2018.77.9777.
doi: 10.1200/JCO.2018.77.9777 |
[11] |
Xu Z, Guo D, Jiang Z, et al. Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: trastuzumab deruxtecan(DS-8201a) and (Vic-)trastuzumab duocarmazine (SYD985)[J]. Eur J Med Chem, 2019, 183: 111682. DOI: 10.1016/j.ejmech.2019.111682.
doi: 10.1016/j.ejmech.2019.111682 |
[12] |
Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase Ⅰ inhibitor, de-monstrates a promising antitumor efficacy with differentiation from T-DM1[J]. Clin Cancer Res, 2016, 22(20): 5097-5108. DOI: 10.1158/1078-0432.CCR-15-2822.
doi: 10.1158/1078-0432.CCR-15-2822 pmid: 27026201 |
[13] |
Tsurutani J, Iwata H, Krop I, et al. Targeting HER2 with trastuzumab deruxtecan: a dose-expansion, phase Ⅰ study in multiple advanced solid tumors[J]. Cancer Discov, 2020, 10(5): 688-701. DOI: 10.1158/2159-8290.CD-19-1014.
doi: 10.1158/2159-8290.CD-19-1014 pmid: 32213540 |
[14] |
Li BT, Smit EF, Goto Y, et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer[J]. N Engl J Med, 2022, 386(3): 241-251. DOI: 10.1056/NEJMoa2112431.
doi: 10.1056/NEJMoa2112431 |
[15] |
Li Q, Zhang R, Yan H, et al. Prognostic significance of HER3 in patients with malignant solid tumors[J]. Oncotarget, 2017, 8(40): 67140-67151. DOI: 10.18632/oncotarget.18007.
doi: 10.18632/oncotarget.18007 |
[16] |
Scharpenseel H, Hanssen A, Loges S, et al. EGFR and HER3 expression in circulating tumor cells and tumor tissue from non-small cell lung cancer patients[J]. Sci Rep, 2019, 9(1): 7406. DOI: 10.1038/s41598-019-43678-6.
doi: 10.1038/s41598-019-43678-6 pmid: 31092882 |
[17] |
Yonesaka K, Tanizaki J, Maenishi O, et al. HER3 augmentation via blockade of EGFR/AKT signaling enhances anticancer activity of HER3-targeting patritumab deruxtecan in EGFR-mutated non-small cell lung cancer[J]. Clin Cancer Res, 2022, 28(2): 390-403. DOI: 10.1158/1078-0432.CCR-21-3359.
doi: 10.1158/1078-0432.CCR-21-3359 |
[18] |
Schoenfeld AJ, Chan JM, Kubota D, et al. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer[J]. Clin Cancer Res, 2020, 26(11): 2654-2663. DOI: 10.1158/1078-0432.CCR-19-3563.
doi: 10.1158/1078-0432.CCR-19-3563 pmid: 31911548 |
[19] |
Jänne PA, Baik C, Su WC, et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer[J]. Cancer Discov, 2022, 12(1): 74-89. DOI: 10.1158/2159-8290.CD-21-0715.
doi: 10.1158/2159-8290.CD-21-0715 |
[20] |
Ahmed Y, Berenguer-Pina JJ, Mahgoub T. The rise of the TROP2-targeting agents in NSCLC: new options on the horizon[J]. Onco-logy, 2021, 99(10): 673-680. DOI: 10.1159/000517438.
doi: 10.1159/000517438 |
[21] |
Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target[J]. Oncotarget, 2018, 9(48): 28989-29006. DOI: 10.18632/oncotarget.25615.
doi: 10.18632/oncotarget.25615 pmid: 29989029 |
[22] |
Zaman S, Jadid H, Denson AC, et al. Targeting Trop-2 in solid tumors: future prospects[J]. Onco Targets Ther, 2019, 12: 1781-1790. DOI: 10.2147/OTT.S162447.
doi: 10.2147/OTT.S162447 |
[23] |
Okajima D, Yasuda S, Maejima T, et al. Datopotamab deruxtecan, a novel TROP2-directed antibody-drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells[J]. Mol Cancer Ther, 2021, 20(12): 2329-2340. DOI: 10.1158/1535-7163.MCT-21-0206.
doi: 10.1158/1535-7163.MCT-21-0206 |
[24] |
Meric-Bernstam F, Spira AI, Lisberg AE, et al. TROPION-PanTumor01: dose analysis of the TROP2-directed antibody-drug conjugate (ADC) datopotamab deruxtecan (Dato-DXd, DS-1062) for the treatment (Tx) of advanced or metastatic non-small cell lung cancer (NSCLC)[J]. J Clin Oncol, 2021, 39(15_suppl): 9058. DOI: 10.1200/JCO.2021.39.15_suppl.9058.
doi: 10.1200/JCO.2021.39.15_suppl.9058 |
[25] |
Seligson JM, Patron AM, Berger MJ, et al. Sacituzumab govitecan-hziy: an antibody-drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer[J]. Ann Pharmacother, 2021, 55(7): 921-931. DOI: 10.1177/1060028020966548.
doi: 10.1177/1060028020966548 pmid: 33070624 |
[26] |
Heist RS, Guarino MJ, Masters G, et al. Therapy of advanced non-small-cell lung cancer with an SN-38-anti-Trop-2 drug conjugate, sacituzumab govitecan[J]. J Clin Oncol, 2017, 35(24): 2790-2797. DOI: 10.1200/JCO.2016.72.1894.
doi: 10.1200/JCO.2016.72.1894 |
[27] |
Bylicki O, Paleiron N, Assié JB, et al. Targeting the MET-signaling pathway in non-small-cell lung cancer: evidence to date[J]. Onco Targets Ther, 2020, 13: 5691-5706. DOI: 10.2147/OTT.S219959.
doi: 10.2147/OTT.S219959 |
[28] |
Wang J, Anderson MG, Oleksijew A, et al. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence[J]. Clin Cancer Res, 2017, 23(4): 992-1000. DOI: 10.1158/1078-0432.CCR-16-1568.
doi: 10.1158/1078-0432.CCR-16-1568 |
[29] |
Strickler JH, Weekes CD, Nemunaitis J, et al. First-in-human phase Ⅰ, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors[J]. J Clin Oncol, 2018, 36(33): 3298-3306. DOI: 10.1200/JCO.2018.78.7697.
doi: 10.1200/JCO.2018.78.7697 pmid: 30285518 |
[30] |
Waqar SN, Redman MW, Arnold SM, et al. A phase Ⅱ study of telisotuzumab vedotin in patients with c-MET-positive stage Ⅳ or recurrent squamous cell lung cancer (LUNG-MAP sub-study S1400K, NCT03574753)[J]. Clin Lung Cancer, 2021, 22(3): 170-177. DOI: 10.1016/j.cllc.2020.09.013.
doi: 10.1016/j.cllc.2020.09.013 |
[31] |
Camidge DR, Barlesi F, Goldman JW, et al. A phase 1b study of telisotuzumab vedotin in combination with nivolumab in patients with NSCLC[J]. JTO Clin Res Rep, 2021, 3(1): 100262. DOI: 10.1016/j.jtocrr.2021.100262.
doi: 10.1016/j.jtocrr.2021.100262 |
[32] |
Camidge DR, Morgensztern D, Heist RS, et al. Phase Ⅰ study of 2- or 3-week dosing of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, monotherapy in patients with advanced non-small cell lung carcinoma[J]. Clin Cancer Res, 2021, 27(21): 5781-5792. DOI: 10.1158/1078-0432.CCR-21-0765.
doi: 10.1158/1078-0432.CCR-21-0765 |
[33] |
Gazzah A, Bedard PL, Hierro C, et al. Safety, pharmacokinetics, and antitumor activity of the anti-CEACAM5-DM4 antibody-drug conjugate tusamitamab ravtansine (SAR408701) in patients with advanced solid tumors: first-in-human dose-escalation study[J]. Ann Oncol, 2022, 33(4): 416-425. DOI: 10.1016/j.annonc.2021.12.012.
doi: 10.1016/j.annonc.2021.12.012 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[3] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[4] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[5] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[6] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[7] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[8] | 马正红, 姜超. 非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[9] | 贺嘉慧, 胡钦勇. 基于GBD数据的中国和美国肺癌发病和死亡趋势及危险因素对比分析[J]. 国际肿瘤学杂志, 2024, 51(1): 29-36. |
[10] | 秦雪倩, 杨宏宇, 王真, 王孟超, 张欣. 双特异性抗体在非小细胞肺癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 558-563. |
[11] | 黄辉, 丁江华. 靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[12] | 李开春, 丁昌利, 于文艳. 安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[13] | 陈秋, 王雷, 王明琦, 张梅. 恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[14] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[15] | 刘利, 朱思齐, 孙梦颖, 何敬东. PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||