国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (12): 705-710.doi: 10.3760/cma.j.cn371439-20220725-00139
• 指南·共识 • 下一篇
中华医学会数字医学分会, 重庆市医学会放射肿瘤治疗学专业委员会, 重庆市中西医结合学会肿瘤放疗专业委员会, 重庆市抗癌协会肿瘤放疗专业委员会
收稿日期:
2022-07-25
修回日期:
2022-09-22
出版日期:
2022-12-08
发布日期:
2023-01-05
通讯作者:
中华医学会数字医学分会
基金资助:
Received:
2022-07-25
Revised:
2022-09-22
Online:
2022-12-08
Published:
2023-01-05
中华医学会数字医学分会, 重庆市医学会放射肿瘤治疗学专业委员会, 重庆市中西医结合学会肿瘤放疗专业委员会, 重庆市抗癌协会肿瘤放疗专业委员会. 鼻咽癌调强放疗靶区勾画重庆共识之原发灶与靶区设计[J]. 国际肿瘤学杂志, 2022, 49(12): 705-710.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Zhang L, Huang Y, Hong S, et al. Gemcitabine plus cisplatin versus fluorouracil plus cisplatin in recurrent or metastatic nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase 3 trial[J]. Lancet, 2016, 388(10054): 1883-1892. DOI: 10.1016/S0140-6736(16)31388-5.
doi: S0140-6736(16)31388-5 pmid: 27567279 |
[3] |
Lang J, Hu C, Lu T, et al. Chinese expert consensus on diagnosis and treatment of nasopharyngeal carcinoma: evidence from current practice and future perspectives[J]. Cancer Manag Res, 2019, 11: 6365-6376. DOI: 10.2147/CMAR.S197544.
doi: 10.2147/CMAR.S197544 pmid: 31372041 |
[4] |
Lee AW, Ng WT, Pan JJ, et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma[J]. Radiother Oncol, 2018, 126(1): 25-36. DOI: 10.1016/j.radonc.2017.10.032.
doi: S0167-8140(17)32686-5 pmid: 29153464 |
[5] | 罗京伟, 徐国镇, 高黎. 头颈部肿瘤放射治疗图谱[M]. 3版. 北京: 人民卫生出版社, 2020. |
[6] |
中国鼻咽癌临床分期工作委员会. 2010鼻咽癌调强放疗靶区及剂量设计指引专家共识[J]. 中华放射肿瘤学杂志, 2011, 20(4): 267-269. DOI: 10.3760/cma.j.issn.1004-4221.2011.04.001.
doi: 10.3760/cma.j.issn.1004-4221.2011.04.001 |
[7] |
中国医师协会放射肿瘤治疗医师分会; 中华医学会放射肿瘤治疗学分会. 中国鼻咽癌放射治疗指南(2020版)[J]. 中华肿瘤防治杂志, 2021, 28(3): 167-177. DOI: 10.16073/j.cnki.cjcpt.2021.03.01.
doi: 10.16073/j.cnki.cjcpt.2021.03.01 |
[8] |
Xue F, Hu C, He X. Induction chemotherapy followed by intensity-modulated radiotherapy with reduced gross tumor volume delineation for stage T3-4 nasopharyngeal carcinoma[J]. Onco Targets Ther, 2017, 10: 3329-3336. DOI: 10.2147/OTT.S140420.
doi: 10.2147/OTT.S140420 |
[9] |
Yang H, Chen X, Lin S, et al. Treatment outcomes after reduction of the target volume of intensity-modulated radiotherapy following induction chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: a prospective, multi-center, randomized clinical trial[J]. Radiother Oncol, 2018, 126(1): 37-42. DOI: 10.1016/j.radonc.2017.07.020.
doi: S0167-8140(17)32479-9 pmid: 28864073 |
[10] |
Zhao C, Miao JJ, Hua YJ, et al. Locoregional control and mild late toxicity after reducing target volumes and radiation doses in patients with locoregionally advanced nasopharyngeal carcinoma treated with induction chemotherapy (IC) followed by concurrent chemoradiotherapy: 10-year results of a phase 2 study[J]. Int J Radiat Oncol Biol Phys, 2019, 104(4): 836-844. DOI: 10.1016/j.ijrobp.2019.03.043.
doi: 10.1016/j.ijrobp.2019.03.043 |
[11] |
Hiyama T, Kuno H, Sekiya K, et al. Bone subtraction iodine imaging using area detector CT for evaluation of skull base invasion by nasopharyngeal carcinoma[J]. AJNR Am J Neuroradiol, 2019, 40(1): 135-141. DOI: 10.3174/ajnr.A5906.
doi: 10.3174/ajnr.A5906 |
[12] |
Becker M, Zbären P, Delavelle J, et al. Neoplastic invasion of the laryngeal cartilage: reassessment of criteria for diagnosis at CT[J]. Radiology, 1997, 203(2): 521-532. DOI: 10.1148/radiology.203.2.9114116.
doi: 10.1148/radiology.203.2.9114116 pmid: 9114116 |
[13] |
Shatzkes DR, Meltzer DE, Lee JA, et al. Sclerosis of the pterygoid process in untreated patients with nasopharyngeal carcinoma[J]. Radiology, 2006, 239(1): 181-186. DOI: 10.1148/radiol.2391042176.
doi: 10.1148/radiol.2391042176 pmid: 16507751 |
[14] |
Boonrod A, Phuttharak W, Ounjaroen N. Prevalence of sclerotic pterygoid plate in pretreatment nasopharyngeal carcinoma[J]. Asian Pac J Cancer Prev, 2022, 23(4): 1193-1197. DOI: 10.31557/APJCP.2022.23.4.1193.
doi: 10.31557/APJCP.2022.23.4.1193 |
[15] |
Niu X, Chang X, Gao Y, et al. Using neoadjuvant chemotherapy and replanning intensity-modulated radiotherapy for nasopharyngeal carcinoma with intracranial invasion to protect critical normal tissue[J]. Radiat Oncol, 2013, 8: 226. DOI: 10.1186/1748-717X-8-226.
doi: 10.1186/1748-717X-8-226 pmid: 24083351 |
[16] |
Wang RH, Zhang SX, Zhou LH, et al. Volume and dosimetric va-riations during two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal carcinoma[J]. Biomed Mater Eng, 2014, 24(1): 1217-1225. DOI: 10.3233/BME-130923.
doi: 10.3233/BME-130923 |
[17] |
Chitapanarux I, Chomprasert K, Nobnaop W, et al. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer[J]. J Radiat Res, 2015, 56(3): 529-538. DOI: 10.1093/jrr/rru119.
doi: 10.1093/jrr/rru119 pmid: 25666189 |
[18] |
Hu YC, Tsai KW, Lee CC, et al. Which nasopharyngeal cancer patients need adaptive radiotherapy?[J]. BMC Cancer, 2018, 18(1): 1234. DOI: 10.1186/s12885-018-5159-y.
doi: 10.1186/s12885-018-5159-y |
[19] |
Jin X, Han C, Zhou Y, et al. A modified VMAT adaptive radio-therapy for nasopharyngeal cancer patients based on CT-CT image fusion[J]. Radiat Oncol, 2013, 8: 277. DOI: 10.1186/1748-717X-8-277.
doi: 10.1186/1748-717X-8-277 |
[20] |
King AD, Vlantis AC, Bhatia KS, et al. Primary nasopharyngeal carcinoma: diagnostic accuracy of MR imaging versus that of endoscopy and endoscopic biopsy[J]. Radiology, 2011, 258(2): 531-537. DOI: 0.1148/radiol.10101241.
doi: 10.1148/radiol.10101241 pmid: 21131580 |
[21] | 王孝深. 鼻咽癌精确放疗的靶区勾画:依据、原则与细节[M]. 北京: 中国科学技术出版社, 2021. |
[22] |
Lin S, Pan J, Han L, et al. Nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy: report on the 3-year outcome of a prospective series[J]. Int J Radiat Oncol Biol Phys, 2009, 75(4): 1071-1078. DOI: 10.1016/j.ijrobp.2008.12.015.
doi: 10.1016/j.ijrobp.2008.12.015 |
[23] |
Zhang S, Yang S, Xu P, et al. Variations of clinical target volume delineation for primary site of nasopharyngeal cancer among five centers in China[J]. Front Oncol, 2020, 10: 1572. DOI: 10.3389/fonc.2020.01572.
doi: 10.3389/fonc.2020.01572 pmid: 32974193 |
[24] | McHanwell S. Pharynx[M]// StandringS, GleesonM. Gray's anatomy. Amsterdam: Elsevier, 2016: 572-575. |
[25] |
Schmidt-Ullrich RK, Buck D, Dogan N, et al. IMRT for carcinomas of the oropharynx and oral cavity[M]// BortfeldT, Schmidt-UllrichR, De NeveW, et al. Image-guided IMRT. Berlin, Heidelberg: Springer, 2006: 301-317. DOI: 10.1007/3-540-30356-1_24.
doi: 10.1007/3-540-30356-1_24 |
[26] |
Lauve A, Morris M, Schmidt-Ullrich R, et al. Simultaneous inte-grated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas: Ⅱ—clinical results[J]. Int J Radiat Oncol Biol Phys, 2004, 60(2): 374-387. DOI: 10.1016/j.ijrobp.2004.03.010.
doi: 10.1016/j.ijrobp.2004.03.010 |
[27] |
Paganetti H, Parodi K, Jiang H, et al. Comparison of pencil-beam and Monte Carlo calculated dose distributions for proton therapy of skull-base and para-spinal tumors[C]// World Congress on Medical Physics and Biomedical Engineering 2006, Berlin, Heidelberg: Springer, 2007: 2219-2222. DOI: 10.1007/978-3-540-36841-0_560.
doi: 10.1007/978-3-540-36841-0_560 |
[28] |
Asher D, Amestoy W, Studenski MT, et al. Dosimetric comparison of intensity-modulated radiation therapy for early-stage glottic cancers with and without the air cavity in the planning target volume[J]. Med Dosim, 2019, 44(4): 405-408. DOI: 10.1016/j.meddos.2019.02.007.
doi: S0958-3947(19)30033-0 pmid: 30928177 |
[29] |
Wadi-Ramahi SJ, Bernard D, Chu JC. Effect of ethmoid sinus cavity on dose distribution at interface and how to correct for it: magnetic field with photon beams[J]. Med Phys, 2003, 30(7): 1556-1565. DOI: 10.1118/1.1578484.
doi: 10.1118/1.1578484 pmid: 12906173 |
[30] |
Behrens CF. Dose build-up behind air cavities for Co-60, 4, 6 and 8 MV. Measurements and Monte Carlo simulations[J]. Phys Med Biol, 2006, 51(22): 5937-5950. DOI: 10.1088/0031-9155/51/22/015.
doi: 10.1088/0031-9155/51/22/015 pmid: 17068375 |
[31] | 柏树令. 系统解剖学[M]. 6版. 北京: 人民卫生出版社, 2004. |
[1] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[2] | 崔腾璐, 孙鹏飞. 鼻咽低级别乳头状腺癌综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(6): 382-384. |
[3] | 顾安琴, 龙金华, 金风. 鼻咽癌免疫治疗的临床研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 299-303. |
[4] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 同步放化疗期间应用聚乙二醇化重组人粒细胞刺激因子中国专家共识(2023版)[J]. 国际肿瘤学杂志, 2023, 50(4): 193-201. |
[5] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 新型冠状病毒感染疫情背景下肿瘤患者放射治疗管理相关问题中国专家共识(2023版)[J]. 国际肿瘤学杂志, 2023, 50(10): 577-584. |
[6] | 严丹方, 王立宏, 叶红星, 严森祥. 人工智能在肿瘤放疗靶区勾画中的应用[J]. 国际肿瘤学杂志, 2022, 49(3): 168-172. |
[7] | 中国抗癌协会肿瘤与微生态专业委员会. 肠道微生态与肿瘤治疗相关消化系统并发症管理中国专家共识[J]. 国际肿瘤学杂志, 2022, 49(12): 711-717. |
[8] | 曾海, 张为家, 王茜, 章凡, 李爽. 无症状转移性结直肠癌原发灶切除的优势人群探索[J]. 国际肿瘤学杂志, 2022, 49(12): 729-734. |
[9] | 陈方明, 蔡园园, 李晗, 王晓丽, 阚红星, 李洋, 郝福荣, 王明臣. 调强放疗鼻咽癌患者UICC第7版与第8版T分期预后差异[J]. 国际肿瘤学杂志, 2021, 48(9): 515-522. |
[10] | 中国抗癌协会肿瘤与微生态专业委员会. 肠道微生态与造血干细胞移植相关性中国专家共识[J]. 国际肿瘤学杂志, 2021, 48(3): 129-135. |
[11] | 彭亚, 柳岸, 刘火旺. PSD-007光动力疗法对荷人鼻咽癌裸鼠移植瘤的抑制作用及机制研究[J]. 国际肿瘤学杂志, 2021, 48(3): 136-142. |
[12] | 宋扬, 王斌, 肖何, 陈川, 王阁, 耿明英. 局部晚期鼻咽癌诱导化疗后肿瘤退缩率对患者生存的预测价值[J]. 国际肿瘤学杂志, 2021, 48(3): 156-163. |
[13] | 朱雷, 黄剑波. 治疗前血浆EB病毒DNA载量和不同治疗方式对Ⅲ期鼻咽癌疗效及预后的影响[J]. 国际肿瘤学杂志, 2021, 48(2): 74-79. |
[14] | 罗文肖, 吴德华, 蔡隆梅. 免疫疗效生物标志物在鼻咽癌治疗中的预测价值[J]. 国际肿瘤学杂志, 2021, 48(12): 743-746. |
[15] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 同步放化疗期间应用聚乙二醇化重组人粒细胞刺激因子中国专家共识(2020版)[J]. 国际肿瘤学杂志, 2021, 48(1): 11-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||