国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (3): 172-175.doi: 10.3760/cma.j.cn371439-20200601-00034
收稿日期:
2020-06-01
修回日期:
2020-09-30
出版日期:
2021-03-08
发布日期:
2021-03-25
通讯作者:
郭庚
E-mail:guogeng973@163.com
基金资助:
Sun Yanqi, Ren Yeqing, Guo Geng*()
Received:
2020-06-01
Revised:
2020-09-30
Online:
2021-03-08
Published:
2021-03-25
Contact:
Guo Geng
E-mail:guogeng973@163.com
Supported by:
摘要:
胶质瘤是颅内发生率较高的肿瘤,其恶性程度高、侵袭性强、致死率高等特点使目前常规治疗方法并不能达到预期的治疗效果,极大地影响患者的生命质量。干扰素作为一种具有抗增殖、抑制血管新生、抑制侵袭等作用的蛋白质,在临床中广泛应用于各种肿瘤的治疗。不少研究表明干扰素在胶质瘤的发生发展过程中起重要作用。探讨干扰素及其相关信号通路在胶质瘤侵袭过程中的作用机制,研究新的胶质瘤治疗方案在临床治疗中显得十分必要。
孙彦琪, 任叶青, 郭庚. 干扰素及其相关信号通路抑制脑胶质瘤侵袭的机制[J]. 国际肿瘤学杂志, 2021, 48(3): 172-175.
Sun Yanqi, Ren Yeqing, Guo Geng. Mechanism of inhibitory effect of interferon and its related signal pathway on the invasion of glioma[J]. Journal of International Oncology, 2021, 48(3): 172-175.
[1] |
Chen R, Smith-Cohn M, Cohen AL, et al. Glioma subclassifications and their clinical significance[J]. Neurotherapeutics, 2017,14(2):284-297. DOI: 10.1007/s13311-017-0519-x.
doi: 10.1007/s13311-017-0519-x pmid: 28281173 |
[2] |
Abrams DA, Hanson JA, Brown JM, et al. Timing of surgery and bevacizumab therapy in neurosurgical patients with recurrent high grade glioma[J]. J Clin Neurosci, 2015,22(1):35-39. DOI: 10.1016/j.jocn.2014.05.054.
doi: 10.1016/j.jocn.2014.05.054 pmid: 25481268 |
[3] |
Castro F, Cardoso AP, Gonçalves RM, et al. Interferon-gamma at the crossroads of tumor immune surveillance or evasion[J]. Front Immunol, 2018,9:847. DOI: 10.3389/fimmu.2018.00847.
doi: 10.3389/fimmu.2018.00847 pmid: 29780381 |
[4] |
Yokota A, Hirai H, Sato R, et al. C/EBPβ is a critical mediator of IFN-α-induced exhaustion of chronic myeloid leukemia stem cells[J]. Blood Adv, 2019,3(3):476-488. DOI: 10.1182/bloodadvances.2018020503.
pmid: 30755436 |
[5] |
Lohmann B, Le Rhun E, Silginer M, et al. nterferon-β sensitizes human glioblastoma cells to the cyclin-dependent kinase inhibitor, TG02[J]. Oncol Lett, 2020,19(4):2649-2656. DOI: 10.3892/ol.2020.11362.
doi: 10.3892/ol.2020.11362 pmid: 32218815 |
[6] |
Medrano RFV, Hunger A, Mendonça SA, et al. Immunomodulatory and antitumor effects of type Ⅰ interferons and their application in cancer therapy[J]. Oncotarget, 2017,8(41):71249-71284. DOI: 10.18632/oncotarget.19531.
doi: 10.18632/oncotarget.19531 pmid: 29050360 |
[7] |
Swiatek-Machado K, Kaminska B. STAT signaling in glioma cells[J]. Adv Exp Med Biol, 2020,1202:203-222. DOI: 10.1007/978-3-030-30651-9_10.
pmid: 32034715 |
[8] |
Zhang Y, Liu Z. STAT1 in cancer: friend or foe?[J]. Discov Med, 2017,24(130):19-29.
pmid: 28950072 |
[9] |
Hua L, Wang G, Wang Z, et al. Activation of STAT1 by the FRK tyrosine kinase is associated with human glioma growth[J]. J Neurooncol, 2019,143(1):35-47. DOI: 10.1007/s11060-019-03143-w.
doi: 10.1007/s11060-019-03143-w pmid: 30993511 |
[10] |
Zhang Y, Jin G, Zhang J, et al. Overexpression of STAT1 suppresses angiogenesis under hypoxia by regulating VEGF A in human glioma cells[J]. Biomed Pharmacother, 2018,104:566-575. DOI: 10.1016/j.biopha.2018.05.079.
doi: 10.1016/j.biopha.2018.05.079 pmid: 29800921 |
[11] |
Arslan AD, Sassano A, Saleiro D, et al. Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma[J]. Oncogene, 2017,36(43):6006-6019. DOI: 10.1038/onc.2017.205.
doi: 10.1038/onc.2017.205 pmid: 28671669 |
[12] |
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017,16(3):203-222. DOI: 10.1038/nrd.2016.246.
doi: 10.1038/nrd.2016.246 pmid: 28209991 |
[13] |
Chen J, Zhong Y, Li L. miR-124 and miR-203 synergistically inactivate EMT pathway via coregulation of ZEB2 in clear cell renal cell carcinoma (ccRCC)[J]. J Transl Med, 2020,18(1):69. DOI: 10.1186/s12967-020-02242-x.
doi: 10.1186/s12967-020-02242-x pmid: 32046742 |
[14] |
Yang CH, Wang Y, Sims M, et al. MiRNA203 suppresses the expression of protumorigenic STAT1 in glioblastoma to inhibit tumorigenesis[J]. Oncotarget, 2016,7(51):84017-84029. DOI: 10.18632/oncotarget.12401.
doi: 10.18632/oncotarget.12401 pmid: 27705947 |
[15] |
Zhou P, Jiang N, Zhang GX, et al. MiR-203 inhibits tumor invasion and metastasis in gastric cancer by ATM.[J]. Acta Biochim Biophys Sin (Shanghai), 2016,48(8):696-703. DOI: 10.1093/abbs/gmw063.
doi: 10.1093/abbs/gmw063 |
[16] |
Yang CH, Wang Y, Sims M, et al. MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway[J]. Oncotarget, 2017,8(68):112980-112991. DOI: 10.18632/oncotarget.22945.
doi: 10.18632/oncotarget.22945 pmid: 29348882 |
[17] |
Zhang J, Zhu ZQ, Li YX, et al. Tim-3 expression in glioma cells is associated with drug resistance[J]. J Cancer Res Ther, 2019,15(4):882-888. DOI: 10.4103/jcrt.JCRT_630_18.
doi: 10.4103/jcrt.JCRT_630_18 pmid: 31436247 |
[18] |
Liu Z, Han H, He X, et al. Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma[J]. Oncol Lett, 2016,11(3):1829-1834. DOI: 10.3892/ol.2016.4142.
pmid: 26998085 |
[19] |
Li X, Wang B, Gu L, et al. Tim-3 expression predicts the abnormal innate immune status and poor prognosis of glioma patients[J]. Clin Chim Acta, 2018,476:178-184. DOI: 10.1016/j.cca.2017.11.022.
doi: 10.1016/j.cca.2017.11.022 pmid: 29174343 |
[20] |
Hannen R, Bartsch JW. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis[J]. FEBS Lett, 2018,592(12):2023-2031. DOI: 10.1002/1873-3468.13084.
doi: 10.1002/1873-3468.13084 pmid: 29749098 |
[21] |
Li G, Shen J, Cao J, et al. Alternative splicing of human telomerase reverse transcriptase in gliomas and its modulation mediated by CX-5461[J]. J Exp Clin Cancer Res, 2018,37(1):78. DOI: 10.1186/s13046-018-0749-8.
doi: 10.1186/s13046-018-0749-8 pmid: 29631594 |
[22] |
George J, Banik NL, Ray SK. Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines[J]. Int J Biochem Cell Biol, 2010,42(7):1164-1173. DOI: 10.1016/j.biocel.2010.04.002.
doi: 10.1016/j.biocel.2010.04.002 pmid: 20394835 |
[23] |
Sun G, Wang Y, Zhang J, et al. MiR-15b/HOTAIR/p53 form a regulatory loop that affects the growth of glioma cells[J]. J Cell Biochem, 2018,119(6):4540-4547. DOI: 10.1002/jcb.26591.
pmid: 29323737 |
[24] | Sarma PP, Dutta D, Mirza Z, et al. [Point mutations in the DNA binding domain of p53 contribute to glioma progression and poor prognosis][J]. Mol Biol (Mosk), 2017,51(2):334-341. DOI: 10.7868/S0026898417020185. |
[25] |
Shen D, Guo CC, Wang J, et al. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells[J]. Oncol Rep, 2015,34(5):2715-2721. DOI: 10.3892/or.2015.4232.
doi: 10.3892/or.2015.4232 pmid: 26329778 |
[26] |
Jiapaer S, Furuta T, Tanaka S, et al. Potential strategies overcoming the temozolomide resistance for glioblastoma[J]. Neurol Med Chir (Tokyo), 2018,58(10):405-421. DOI: 10.2176/nmc.ra.2018-0141.
doi: 10.2176/nmc.ra.2018-0141 |
[27] |
GuhaSarkar D, Neiswender J, Su Q, et al. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model[J]. Mol Oncol, 2017,11(2):180-193. DOI: 10.1002/1878-0261.12020.
doi: 10.1002/1878-0261.12020 pmid: 28098415 |
[28] |
Pu W, Qiu J, Riggins GJ, et al. Matrix protease production, epithelial-to-mesenchymal transition marker expression and invasion of glioblastoma cells in response to osmotic or hydrostatic pressure[J]. Sci Rep, 2020,10(1):2634. DOI: 10.1038/s41598-020-59462-w.
doi: 10.1038/s41598-020-59462-w pmid: 32060379 |
[29] |
Wang H, Hou Y, Hu Y, et al. Enzyme-activatable interferon-poly(α-amino acid) conjugates for tumor microenvironment potentiation[J]. Biomacromolecules, 2019,20(8):3000-3008. DOI: 10.1021/acs.biomac.9b00560.
pmid: 31310511 |
[1] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[2] | 邢明泉, 葛洪峰, 张丽侠, 韩浩, 吴维霞. 疑似免疫性血小板减少症的侵袭性自然杀伤细胞白血病1例[J]. 国际肿瘤学杂志, 2023, 50(5): 318-320. |
[3] | 张子叔, 乌新林. 肿瘤微环境中乳酸的作用机制及相关治疗[J]. 国际肿瘤学杂志, 2022, 49(6): 349-352. |
[4] | 肖楠, 孙鹏飞. 氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. |
[5] | 石雨, 陈曦, 许梦琪, 张滢滢, 冀洪海, 蒋英英. 沉默PSIP1基因对口腔鳞状细胞癌细胞迁移及侵袭的影响[J]. 国际肿瘤学杂志, 2022, 49(3): 129-133. |
[6] | 朱一硕, 崔玉洁, 刘崎, 李军, 范月超. 脑胶质瘤患者术后早期复发危险因素分析及预测模型构建[J]. 国际肿瘤学杂志, 2022, 49(2): 79-83. |
[7] | 孔春禹, 孙鹏飞. SLC7A11与胶质瘤[J]. 国际肿瘤学杂志, 2022, 49(10): 604-607. |
[8] | 郭世豪, 任叶青, 郭庚. 脑胶质瘤血管生成拟态分子机制[J]. 国际肿瘤学杂志, 2021, 48(6): 362-365. |
[9] | 王宪伟, 史美燕, 王凤芹, 齐福, 王朝喆, 周飞. TSA上调miR-4298靶向抑制PADI4表达在诱导U251细胞凋亡中的作用[J]. 国际肿瘤学杂志, 2021, 48(4): 193-199. |
[10] | 张雯, 胡伟国, 宋启斌. 3D-ASL与DCE-MRI在脑胶质瘤复发与放射性脑坏死鉴别诊断中的价值[J]. 国际肿瘤学杂志, 2021, 48(10): 631-634. |
[11] | 王宁菊, 陈冬梅, 章恒, 胡萍, 王燕. 靶向沉默PRL-3基因对肺癌细胞增殖、迁移、侵袭及上皮间质转化的影响[J]. 国际肿瘤学杂志, 2021, 48(1): 18-23. |
[12] | 魏梦雨, 马力. Mfn2在肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2021, 48(1): 45-47. |
[13] | 李钰祥, 王新文. 干扰素治疗肿瘤相关的信号通路及临床应用[J]. 国际肿瘤学杂志, 2020, 47(6): 364-367. |
[14] | 赵聪选, 于韬. 胶质瘤相关基因的挖掘及预测[J]. 国际肿瘤学杂志, 2020, 47(5): 293-296. |
[15] | 南阳, 钟跃. 长非编码RNA在神经胶质瘤研究中的新进展[J]. 国际肿瘤学杂志, 2020, 47(2): 98-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||