[1] |
Hartmann FJ, Babdor J, Gherardini PF, et al. Comprehensive immune monitoring of clinical trials to advance human immunotherapy[J]. Cell Rep, 2019,28(3): 819-831.e4. DOI: 10.1016/j.celrep.2019.06.049.
|
[2] |
Nie P, Li Z, Wang Y, et al. Gut microbiome interventions in human health and diseases[J]. Med Res Rev, 2019,39(6):2286-2313. DOI: 10.1002/med.21584.
doi: 10.1002/med.21584
pmid: 30994937
|
[3] |
Wei MY, Shi S, Liang C, et al. The microbiota and microbiome in pancreatic cancer: more influential than expected[J]. Mol Cancer, 2019,18(1):97. DOI: 10.1186/s12943-019-1008-0.
pmid: 31109338
|
[4] |
Baba Y, Iwatsuki M, Yoshida N, et al. Review of the gut microbiome and esophageal cancer: pathogenesis and potential clinical implications[J]. Ann Gastroenterol Surg, 2017,1(2):99-104. DOI: 10.1002/ags3.12014.
pmid: 29863142
|
[5] |
Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of fusobacte-rium persistence and antibiotic response in colorectal cancer[J]. Science, 2017,358(6369):1443-1448. DOI: 10.1126/science.aal5240.
pmid: 29170280
|
[6] |
Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer[J]. Nat Med, 2019,25(4):679-689. DOI: 10.1038/s41591-019-0406-6.
doi: 10.1038/s41591-019-0406-6
pmid: 30936547
|
[7] |
Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity[J]. Nat Rev Gastroenterol Hepatol, 2017,14(6):356-365. DOI: 10.1038/nrgastro.2017.20.
doi: 10.1038/nrgastro.2017.20
pmid: 28270698
|
[8] |
Wang Y, Wiesnoski DH, Helmink BA, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis[J]. Nat Med, 2018,24(12):1804-1808. DOI: 10.1038/s41591-018-0238-9.
doi: 10.1038/s41591-018-0238-9
pmid: 30420754
|
[9] |
Rosa CP, Brancaglion GA, Miyauchi-Tavares TM, et al. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions[J]. Life Sci, 2018,207:480-491. DOI: 10.1016/j.lfs.2018.06.030.
doi: 10.1016/j.lfs.2018.06.030
pmid: 30056862
|
[10] |
Russell B, Garmo H, Beckmann K, et al. A case-control study of lower urinary-tract infections, associated antibiotics and the risk of developing prostate cancer using PCBaSe 3.0[J]. PLoS One, 2018,13(4):e0195690. DOI: 10.1371/journal.pone.0195690.
doi: 10.1371/journal.pone.0195690
pmid: 29649268
|
[11] |
Zhang J, Haines C, Watson AJM, et al. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: a matched case-control study[J]. Gut, 2019,68(11):1971-1978. DOI: 10.1136/gutjnl-2019-318593.
doi: 10.1136/gutjnl-2019-318593
pmid: 31427405
|
[12] |
Petrelli F, Ghidini M, Ghidini A, et al. Use of antibiotics and risk of cancer: a systematic review and meta-analysis of observational studies[J]. Cancers (Basel), 2019,11(8):1174. DOI: 10.3390/cancers11081174.
|
[13] |
Sethi V, Kurtom S, Tarique M, et al. Gut microbiota promotes tumor growth in mice by modulating immune response[J]. Gastroenterology, 2018,155(1):33-37.e6. DOI: 10.1053/j.gastro.2018.04.001.
pmid: 29630898
|
[14] |
Yan C, Tu XX, Wu W, et al. Antibiotics and immunotherapy in gastrointestinal tumors: friend or foe?[J]. World J Clin Cases, 2019,7(11):1253-1261. DOI: 10.12998/wjcc.v7.i11.1253.
doi: 10.12998/wjcc.v7.i11.1253
pmid: 31236389
|
[15] |
Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors[J]. Cancer Cell, 2020,37(4):443-455. DOI: 10.1016/j.ccell.2020.03.017.
doi: 10.1016/j.ccell.2020.03.017
pmid: 32289269
|
[16] |
Hermel DJ, Sigal D. The emerging role of checkpoint inhibition in microsatellite stable colorectal cancer[J]. J Pers Med, 2019,9(1):5. DOI: 10.3390/jpm9010005.
|
[17] |
Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial[J]. Lancet Oncol, 2019,20(6):849-861. DOI: 10.1016/S1470-2045(19)30027-0.
doi: 10.1016/S1470-2045(19)30027-0
pmid: 31003911
|
[18] |
Aguiar PN Jr, De Mello RA, Hall P, et al. PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data[J]. Immunotherapy, 2017,9(6):499-506. DOI: 10.2217/imt-2016-0150.
doi: 10.2217/imt-2016-0150
pmid: 28472902
|
[19] |
Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer[J]. Ann Oncol, 2018,29(6):1437-1444. DOI: 10.1093/annonc/mdy103.
pmid: 29617710
|
[20] |
Pinato DJ, Howlett S, Ottaviani D, et al. Association of prior anti-biotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer[J]. JAMA Oncol, 2019,5(12):1774-1778. DOI: 10.1001/jamaoncol.2019.2785.
doi: 10.1001/jamaoncol.2019.2785
pmid: 31513236
|
[21] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018,359(6371):91-97. DOI: 10.1126/science.aan3706.
pmid: 29097494
|
[22] |
Kaderbhai C, Richard C, Fumet JD, et al. Antibiotic use does not appear to influence response to nivolumab[J]. Anticancer Res, 2017,37(6):3195-3200. DOI: 10.21873/anticanres.11680.
doi: 10.21873/anticanres.11680
pmid: 28551664
|
[23] |
Tinsley N, Zhou C, Tan G, et al. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer[J]. Oncologist, 2020,25(1):55-63. DOI: 10.1634/theoncologist.2019-0160.
doi: 10.1634/theoncologist.2019-0160
pmid: 31292268
|
[24] |
Ahmed J, Kumar A, Parikh K, et al. Use of broad-spectrum anti-biotics impacts outcome in patients treated with immune checkpoint inhibitors[J]. Oncoimmunology, 2018,7(11):e1507670. DOI: 10.1080/2162402X.2018.1507670.
doi: 10.1080/2162402X.2018.1507670
pmid: 30377571
|
[25] |
Huang XZ, Gao P, Song YX, et al. Antibiotic use and the efficacy of immune checkpoint inhibitors in cancer patients: a pooled analysis of 2740 cancer patients[J]. Oncoimmunology, 2019,8(12):e1665973. DOI: 10.1080/2162402X.2019.1665973.
doi: 10.1080/2162402X.2019.1665973
pmid: 31741763
|
[26] |
Suez J, Zmora N, Zilberman-Schapira G, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT[J]. Cell, 2018,174(6):1406-1423.e16. DOI: 10.1016/j.cell.2018.08.047.
pmid: 30193113
|