国际肿瘤学杂志 ›› 2018, Vol. 45 ›› Issue (8): 506-509.doi: 10.3760/cma.j.issn.1673422X.2018.08.013

• 综述 • 上一篇    下一篇

雄激素剥脱治疗后前列腺癌发展为去势抵抗性前列腺癌的分子机制

徐耀宗,顾晓,王飞,丁雪飞   

  1. 116044大连医科大学研究生院(徐耀宗、王飞);江苏省苏北人民医院泌尿外科(徐耀宗、顾晓、王飞、丁雪飞)
  • 出版日期:2018-08-08 发布日期:2018-11-01
  • 通讯作者: 丁雪飞,Email: xuefeid@163.com E-mail:xuefeid@163.com

Molecular mechanisms of castrationresistant prostate cancer progressed from prostate cancer by androgen deprivation treatment

Xu Yaozong, Gu Xiao, Wang Fei, Ding Xuefei   

  1. Graduate School of Dalian Medical University, Dalian 116044, China; Department of Urology, Subei People′s Hospital of Jiangsu Province, Yangzhou 225001, China
  • Online:2018-08-08 Published:2018-11-01
  • Contact: Ding Xuefei E-mail:xuefeid@163.com

摘要: 雄激素剥脱治疗(ADT)是局部晚期或转移性激素敏感性前列腺癌患者治疗的金标准。然而,大多数患者经过数月或数年的ADT治疗,病情却通过一系列不同的分子机制发展为去势抵抗性前列腺癌(CRPC)。CRPC目前仍是不可治愈的,而且极具致命性。因此,深入研究不同分子机制在CRPC发生发展中的作用,可能为未来进行相关靶向治疗指引新方向。

关键词: 前列腺肿瘤, 受体, 雄激素, 癌, 神经内分泌, 肿瘤干细胞, 转化

Abstract: [1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 730. DOI: 10.3322/caac.21332. [2]  Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115132. DOI: 10.3322/caac.21338. [3]  Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. Part Ⅱ: treatment of advanced, relapsing, and castrationresistant prostate cancer[J]. Eur Urol, 2014, 65(2): 467479. DOI: 10.1016/j.eururo.2013.11.002. [4] Cornford P, Bellmunt J, Bolla M, et al. EAUESTROSIOG guidelines on prostate cancer. Part Ⅱ: treatment of relapsing, metastatic, and castrationresistant prostate cancer[J]. Eur Urol, 2017, 71(4): 630642. DOI: 10.1016/j.eururo.2016.08.002. [5] Ceder Y, Bjartell A, Culig Z, et al. The molecular evolution of castrationresistant prostate cancer[J]. Eur Urol Focus, 2016, 2(5): 506513. DOI: 10.1016/j.euf.2016.11.012. [6] Chandrasekar T, Yang JC, Gao AC, et al. Mechanisms of resistance in castrationresistant prostate cancer (CRPC)[J]. Transl Androl Urol, 2015, 4(3): 365380. DOI: 10.3978/j.issn.22234683.2015.05.02. [7] Yamamoto Y, Loriot Y, Beraldi E, et al. Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamideresistant prostate cancer cell growth[J]. Clin Cancer Res, 2015, 21(7): 16751687. DOI: 10.1158/10780432.CCR141108. [8] Mostaghel EA, Marck BT, Plymate SR, et al. Resistance to CYP17A1 inhibition with abiraterone in castrationresistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants[J]. Clin Cancer Res, 2011, 17(18): 59135925. DOI: 10.1158/10780432.CCR110728. [9] Romanel A, Gasi Tandefelt D, Conteduca V, et al. Plasma AR and abirateroneresistant prostate cancer[J]. Sci Transl Med, 2015, 7(312): 312re10. DOI: 10.1126/scitranslmed.aac9511. [10]  Boudadi K, Antonarakis ES. Resistance to novel antiandrogen therapies in metastatic castrationresistant prostate cancer[J]. Clin Med Insights Oncol, 2016, 10(Suppl1): 19. DOI: 10.4137/CMO.S34534. [11] Korpal M, Korn JM, Gao X, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide)[J]. Cancer Discov, 2013, 3(9): 10301043. DOI: 10.1158/21598290.CD130142. [12] Kong D, Sethi S, Li Y, et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes[J]. Prostate, 2015, 75(2): 161174. DOI: 10.1002/pros.22901. [13] Jin R, Yamashita H, Yu X, et al. Inhibition of NFkappa B signaling restores responsiveness of castrateresistant prostate cancer cells to antiandrogen treatment by decreasing androgen receptor variants expression[J]. Oncogene, 2015, 34(28): 37003710. DOI: 10.1038/onc.2014.302. [14] Deng C, Chen J, Guo S, et al. CX4945 suppresses the growth of castrationresistant prostate cancer cells by reducing ARV7 expression[J]. World J Urol, 2017, 35(8): 12131221. DOI: 10.1007/s003450161996y. [15] Ryan CJ, Smith MR, Fizazi K, et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapynaive men with metastatic castrationresistant prostate cancer (COUAA302): final overall survival analysis of a randomised, doubleblind, placebocontrolled phase 3 study[J]. Lancet Oncol, 2015, 16(2): 152160. DOI: 10.1016/S14702045(14)712057. [16] Shi XB, Xue L, Ma AH, et al. Tumor suppressive miR124 targets androgen receptor and inhibits proliferation of prostate cancer cells[J]. Oncogene, 2013, 32(35): 41304138. DOI: 10.1038/onc.2012.425. [17] Wan X, Huang W, Yang S, et al. Androgeninduced miR27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression[J]. Int J Biochem Cell Biol, 2016, 79: 249260. DOI: 10.1016/j.biocel.2016.08.043. [18] Wan X, Pu H, Huang W, et al. Androgeninduced miR135a acts as a tumor suppressor through downregulating RBAK and MMP11, and mediates resistance to androgen deprivation therapy[J]. Oncotarget, 2016, 7(32): 5128451300. DOI: 10.18632/oncotarget.9992. [19] Carver BS. Defining and targeting the oncogenic drivers of neuroendocrine prostate cancer[J]. Cancer Cell, 2016, 29(4): 431432. DOI: 10.1016/j.ccell.2016.03.023. [20] Tan HL, Sood A, Rahimi HA, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma[J]. Clin Cancer Res, 2014, 20(4): 890903. DOI: 10.1158/10780432.CCR131982. [21] Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320): 7883. DOI: 10.1126/science.aah4199. [22] Mu P, Zhang Z, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53 and RB1deficient prostate cancer[J]. Science, 2017, 355(6320): 8488. DOI: 10.1126/science.aah4307. [23] Dang Q, Li L, Xie H, et al. Antiandrogen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells→androgen receptor (AR)→miRNA32 signals[J]. Mol Oncol, 2015, 9(7): 12411251. DOI: 10.1016/j.molonc.2015.02.010. [24] Shiota M, Yokomizo A, Takeuchi A, et al. Inhibition of protein kinase C/Twist1 signaling augments anticancer effects of androgen deprivation and enzalutamide in prostate cancer[J]. Clin Cancer Res, 2014, 20(4): 951961. DOI: 10.1158/10780432.CCR131809. [25] Shang Z, Cai Q, Zhang M, et al. A switch from CD44+ cell to EMT cell drives the metastasis of prostate cancer[J]. Oncotarget, 2015, 6(2): 12021216. DOI: 10.18632/oncotarget.2841. [26] Leong KG, Wang BE, Johnson L, et al. Generation of a prostate from a single adult stem cell[J]. Nature, 2008, 456(7223): 804808. DOI: 10.1038/nature07427. [27] Jain AK, Allton K, Iacovino M, et al. p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells[J]. PLoS Biol, 2012, 10(2): e1001268. DOI: 10.1371/journal.pbio.1001268. [28] Li L, Dang Q, Xie H, et al. Infiltrating mast cells enhance prostate cancer invasion via altering LncRNAHOTAIR/PRC2androgen receptor (AR)MMP9 signals and increased stem/progenitor cell population[J]. Oncotarget, 2015, 6(16): 1417914190. DOI: 10.18632/oncotarget.3651. [29] Akamatsu, Wyatt AW, Lin D, et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer[J]. Cell Rep, 2015, 12(6): 922936. DOI: 10.1016/j.celrep.2015.07.012.

Key words: Prostatic neoplasms, Receptors, androgen, Carcinoma, neuroendocrine, Neoplastic stem cells, Transformation