| [1] |
Li Y, Liu F, Cai Q, et al. Invasion and metastasis in cancer: molecular insights and therapeutic targets[J]. Signal Transduct Target Ther, 2025, 10(1): 57. DOI: 10.1038/s41392-025-02148-4.
|
| [2] |
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions[J]. Mol Biomed, 2025, 6(1): 20. DOI: 10.1186/s43556-025-00261-y.
pmid: 40192949
|
| [3] |
Wang C, Nagayach A, Patel H, et al. Utilizing human cerebral organoids to model breast cancer brain metastasis in culture[J]. Breast Cancer Res, 2024, 26(1): 108. DOI: 10.1186/s13058-024-01865-y.
pmid: 38951862
|
| [4] |
Pang M J, Burclaff JR, Jin R, et al. Gastric organoids: progress and remaining challenges[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(1): 19-33. DOI: 10.1016/j.jcmgh.2021.09.005.
|
| [5] |
Zhou S, Lu J, Liu S, et al. Role of the tumor microenvironment in malignant melanoma organoids during the development and metastasis of tumors[J]. Front Cell Dev Biol, 2023, 11: 1166916. DOI: 10.3389/fcell.2023.1166916.
|
| [6] |
Abdolahi S, Ghazvinian Z, Muhammadnejad S, et al. Patient-derived xenograft (PDX) models, applications and challenges in cancer research[J]. J Transl Med, 2022, 20(1): 206. DOI: 10.1186/s12967-022-03405-8.
pmid: 35538576
|
| [7] |
Park Y, Lee D, Lee JE, et al. The matrix stiffness coordinates the cell proliferation and PD-L1 expression via YAP in lung adenocarcinoma[J]. Cancers (Basel), 2024, 16(3): 598. DOI: 10.3390/cancers16030598.
|
| [8] |
Seidlitz T, Koo BK, Stange DE. Gastric organoids—an in vitro model system for the study of gastric development and road to personalized medicine[J]. Cell Death Differ, 2021, 28(1): 68-83. DOI: 10.1038/s41418-020-00662-2.
pmid: 33223522
|
| [9] |
Paul CD, Yankaskas C, Shahi Thakuri P, et al. Long-term maintenance of patient-specific characteristics in tumoroids from six cancer indications[J]. Sci Rep, 2025, 15(1): 3933. DOI: 10.1038/s41598-025-86979-9.
|
| [10] |
Idrisova KF, Simon HU, Gomzikova MO. Role of patient-derived models of cancer in translational oncology[J]. Cancers (Basel), 2022, 15(1): 139. DOI: 10.3390/cancers15010139.
|
| [11] |
Pang X, Hu Y, Dai Z, et al. Precision medicine research progress based on colorectal cancer organoids[J]. Horm Cancer, 2025, 16(1): 1181. DOI: 10.1007/s12672-025-02959-5.
|
| [12] |
Cartry J, Bedja S, Boilève A, et al. Implementing patient derived organoids in functional precision medicine for patients with advanced colorectal cancer[J]. J Exp Clin Cancer Res, 2023, 42(1): 281. DOI: 10.1186/s13046-023-02853-4.
pmid: 37880806
|
| [13] |
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945. DOI: 10.1016/j.cell.2015.03.053.
pmid: 25957691
|
| [14] |
Thng DKH, Hooi L, Siew BE, et al. A functional personalised oncology approach against metastatic colorectal cancer in matched patient derived organoids[J]. NPJ Precis Oncol, 2024, 8(1): 52. DOI: 10.1038/s41698-024-00543-8.
pmid: 38413740
|
| [15] |
Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2): 373-386.e10. DOI: 10.1016/j.cell.2017.11.010.
|
| [16] |
Yan HH, Siu HC, Law S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6): 882-897.e11. DOI: 10.1016/j.stem.2018.09.016.
pmid: 30344100
|
| [17] |
Liu Y, Lankadasari M, Rosiene J, et al. Modeling lung adenocarcinoma metastases using patient-derived organoids[J]. Cell Rep Med, 2024, 5(10): 101777. DOI: 10.1016/j.xcrm.2024.101777.
|
| [18] |
Buzzelli JN, Ouaret D, Brown G, et al. Colorectal cancer liver metastases organoids retain characteristics of original tumor and acquire chemotherapy resistance[J]. Stem Cell Res, 2018, 27: 109-120. DOI: 10.1016/j.scr.2018.01.016.
pmid: 29414601
|
| [19] |
Chen J, Cheng S, Gu L, et al. Establishment and characterization of a sigmoid colon cancer organoid with spinal metastasis[J]. Front Cell Dev Biol, 2025, 12: 1510264. DOI: 10.3389/fcell.2024.1510264.
|
| [20] |
Wang L, Hu XD, Li SY, et al. ASPM facilitates colorectal cancer cells migration and invasion by enhancing β-catenin expression and nuclear translocation[J]. Kaohsiung J Med Sci, 2022, 38(2): 129-138. DOI: 10.1002/kjm2.12464.
|
| [21] |
Morita A, Nakayama M, Wang D, et al. Frequent loss of metastatic ability in subclones of Apc, Kras, Tgfbr2, and Trp53 mutant intestinal tumor organoids[J]. Cancer Sci, 2023, 114(4): 1437-1450. DOI: 10.1111/cas.15709.
|
| [22] |
Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187. DOI: 10.1016/j.cell.2014.08.016.
pmid: 25201530
|
| [23] |
Mout L, van Dessel LF, Kraan J, et al. Generating human prostate cancer organoids from leukapheresis enriched circulating tumour cells[J]. Eur J Cancer, 2021, 150: 179-189. DOI: 10.1016/j.ejca.2021.03.023.
pmid: 33932725
|
| [24] |
Lin KC, Ting LL, Chang CL, et al. Ex vivo expanded circulating tumor cells for clinical anti-cancer drug prediction in patients with head and neck cancer[J]. Cancers (Basel), 2021, 13(23): 6076. DOI: 10.3390/cancers13236076.
|
| [25] |
De Angelis ML, Francescangeli F, Nicolazzo C, et al. An organoid model of colorectal circulating tumor cells with stem cell features, hybrid EMT state and distinctive therapy response profile[J]. J Exp Clin Cancer Res, 2022, 41(1): 86. DOI: 10.1186/s13046-022-02263-y.
pmid: 35260172
|
| [26] |
Wu YH, Chao HS, Chiang CL, et al. Personalized cancer avatars for patients with thymic malignancies: a pilot study with circulating tumor cell-derived organoids[J]. Thorac Cancer, 2023, 14(25): 2591-2600. DOI: 10.1111/1759-7714.15039.
|
| [27] |
Mo S, Tang P, Luo W, et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy[J]. Adv Sci (Weinh), 2022, 9(31): e2204097. DOI: 10.1002/advs.202204097.
|
| [28] |
Ubink I, Bolhaqueiro ACF, Elias SG, et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy[J]. Br J Surg, 2019, 106(10): 1404-1414. DOI: 10.1002/bjs.11206.
pmid: 31197820
|
| [29] |
Mönch D, Koch J, Maaß A, et al. A human ex vivo coculture model to investigate peritoneal metastasis and innovative treatment options[J]. Pleura Peritoneum, 2021, 6(3): 121-129. DOI: 10.1515/pp-2021-0128.
pmid: 34676285
|
| [30] |
Önder CE, Ziegler TJ, Becker R, et al. Advancing cancer therapy predictions with patient-derived organoid models of metastatic breast cancer[J]. Cancers (Basel), 2023, 15(14): 3602. DOI: 10.3390/cancers15143602.
|
| [31] |
Cheng F, Li P, Xu S, et al. A pair of primary colorectal cancer-derived and corresponding synchronous liver metastasis-derived organoid cell lines[J]. Aging (Albany NY), 2024, 16(5): 4396-4422. DOI: 10.18632/aging.205595.
|
| [32] |
Hicks WH, Gattie LC, Shami ME, et al. Matched three-dimensional organoids and two-dimensional cell lines of melanoma brain metastases mirror response to targeted molecular therapy[J]. Sci Rep, 2024, 14(1): 24843. DOI: 10.1038/s41598-024-76583-8.
pmid: 39438602
|
| [33] |
焦盼盼, 薛丽娟, 詹娟. 免疫检查点抑制剂相关不良反应的危险因素与预测因素[J]. 国际肿瘤学杂志, 2023, 50(12): 739-744. DOI: 10.3760/cma.j.cn371439-20230810-00139.
|
| [34] |
Küçükköse E, Heesters BA, Villaudy J, et al. Modeling resistance of colorectal peritoneal metastases to immune checkpoint blockade in humanized mice[J]. J Immunother Cancer, 2022, 10(12): e005345. DOI: 10.1136/jitc-2022-005345.
|
| [35] |
Wang J, Tao X, Zhu J, et al. Tumor organoid-immune co-culture models: exploring a new perspective of tumor immunity[J]. Cell Death Discov, 2025, 11(1): 195. DOI: 10.1038/s41420-025-02407-x.
pmid: 40268893
|
| [36] |
Zhou X, Qu M, Tebon P, et al. Screening cancer immunotherapy: when engineering approaches meet artificial intelligence[J]. Adv Sci (Weinh), 2020, 7(19): 2001447. DOI: 10.1002/advs.202001447.
|
| [37] |
Zhou R, Brislinger D, Fuchs J, et al. Vascularised organoids: recent advances and applications in cancer research[J]. Clin Transl Med, 2025, 15(3): e70258. DOI: 10.1002/ctm2.70258.
|
| [38] |
Hajal C, Ibrahim L, Serrano JC, et al. The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform[J]. Biomaterials, 2021, 265: 120470. DOI: 10.1016/j.biomaterials.2020.120470.
|