国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (8): 515-519.doi: 10.3760/cma.j.cn371439-20240304-00086
收稿日期:
2024-03-04
修回日期:
2024-05-02
出版日期:
2024-08-08
发布日期:
2024-09-24
通讯作者:
陆海军,Email:lhj82920608@163.com
Received:
2024-03-04
Revised:
2024-05-02
Online:
2024-08-08
Published:
2024-09-24
Contact:
Lu Haijun,Email:lhj82920608@163.com
摘要:
口腔菌群在口腔鳞状细胞癌(OSCC)的发生、发展及转归过程中始终呈动态变化,二者相互促进,相辅相成,密不可分;口腔菌群在健康者、OSCC癌前病变者、OSCC患者中存在差异,可以作为OSCC癌前病变或OSCC诊断的标志物;口腔菌群的基线水平以及治疗后的变化在不同患者中也存在差异,可作为OSCC预后的生物标志物;口腔菌群的调节还可以作为一种微生物疗法,加入到现有标准疗法中,进一步改善OSCC患者的预后。
孟珂心, 陆海军. 口腔菌群:口腔鳞状细胞癌诊断和预后的生物标志物[J]. 国际肿瘤学杂志, 2024, 51(8): 515-519.
Meng Kexin, Lu Haijun. Oral microbiota:a biomarker for the diagnosis and prognosis of oral squamous cell carcinoma[J]. Journal of International Oncology, 2024, 51(8): 515-519.
[1] | Smędra A, Berent J. The influence of the oral microbiome on oral cancer: a literature review and a new approach[J]. Biomolecules, 2023, 13(5): 815. DOI: 10.3390/biom13050815. |
[2] | Li RH, Xiao L, Gong T, et al. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis[J]. Mol Oral Microbiol, 2023, 38(1): 9-22. DOI: 10.1111/omi.12403. |
[3] |
Harrandah AM. The role of fusobacteria in oral cancer and immune evasion[J]. Curr Opin Oncol, 2023, 35(2): 125-131. DOI: 10.1097/cco.0000000000000927.
pmid: 36633319 |
[4] | Pignatelli P, Romei FM, Bondi D, et al. Microbiota and oral cancer as a complex and dynamic microenvironment: a narrative review from etiology to prognosis[J]. Int J Mol Sci, 2022, 23(15): 8323. DOI: 10.3390/ijms23158323. |
[5] | Li CX, Liu H, Gong ZC. What is the potential interplay between microbiome and tumor microenvironment in oral squamous cell carcinomas?[J]. Asian Pac J Cancer Prev, 2022, 23(7): 2199-2213. DOI: 10.31557/apjcp.2022.23.7.2199. |
[6] | Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3): 633-642. DOI: 10.1016/j.semcancer.2021.11.002. |
[7] |
Theofilou VI, Alfaifi A, Montelongo-Jauregui D, et al. The oral mycobiome: oral epithelial dysplasia and oral squamous cell carcinoma[J]. J Oral Pathol Med, 2022, 51(5): 413-420. DOI: 10.1111/jop.13295.
pmid: 35347760 |
[8] | Su Mun L, Wye Lum S, Kong Yuiin Sze G, et al. Association of microbiome with oral squamous cell carcinoma: a systematic review of the metagenomic studies[J]. Int J Environ Res Public Health, 2021, 18(14): 7224. DOI: 10.3390/ijerph18147224. |
[9] | Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy[J]. Microb Pathog, 2022, 169: 105638. DOI: 10.1016/j.micpath.2022.105638. |
[10] | Zhou XX, Hao Y, Peng X, et al. The clinical potential of oral microbiota as a screening tool for oral squamous cell carcinomas[J]. Front Cell Infect Microbiol, 2021, 11: 728933. DOI: 10.3389/fcimb.2021.728933. |
[11] |
Takahashi YSH, Park J, Hosomi K, et al. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing[J]. J Oral Biosci, 2019, 61(2): 120-128. DOI: 10.1016/j.job.2019.03.003.
pmid: 31109865 |
[12] | Anjali K, Manzoor M, Suryavanshi MV, et al. Dysbiosis of the oral microbiota composition is associated with oral squamous cell carcinoma and the impact of radiotherapy: a pilot study[J]. FEMS Microbiol Lett, 2023, 370: fnad111. DOI: 10.1093/femsle/fnad111. |
[13] | Wright RJ, Pewarchuk ME, Marshall EA, et al. Exploring the microbiome of oral epithelial dysplasia as a predictor of malignant progression[J]. BMC Oral Health, 2023, 23(1): 206. DOI: 10.1186/s12903-023-02911-5. |
[14] |
Chen MY, Chen JW, Wu LW, et al. Carcinogenesis of male oral submucous fibrosis alters salivary microbiomes[J]. J Dent Res, 2021, 100(4): 397-405. DOI: 10.1177/0022034520968750.
pmid: 33089709 |
[15] | Li ZX, Chen G, Wang PP, et al. Alterations of the oral microbiota profiles in Chinese patient with oral cancer[J]. Front Cell Infect Microbiol, 2021, 11: 780067. DOI: 10.3389/fcimb.2021.780067. |
[16] | Zeng B, Tan J, Guo GA, et al. The oral cancer microbiome contains tumor space-specific and clinicopathology-specific bacteria[J]. Front Cell Infect Microbiol, 2022, 12: 942328. DOI: 10.3389/fcimb.2022.942328. |
[17] | Nie FJ, Wang LH, Huang YY, et al. Characteristics of microbial distribution in different oral niches of oral squamous cell carcinoma[J]. Front Cell Infect Microbiol, 2022, 12: 905653. DOI: 10.3389/fcimb.2022.905653. |
[18] | Li Y, Tan X, Zhao X, et al. Composition and function of oral microbiota between gingival squamous cell carcinoma and periodontitis[J]. Oral Oncol, 2020, 107: 104710. DOI: 10.1016/j.oraloncology.2020.104710. |
[19] | Shitozawa Y, Haro K, Ogawa M, et al. Differences in the microbiota of oral rinse, lesion, and normal site samples from patients with mucosal abnormalities on the tongue[J]. Sci Rep, 2022, 12(1): 16839. DOI: 10.1038/s41598-022-21031-8. |
[20] | Herreros-Pomares A, Hervás D, Bagan-Debón L, et al. On the oral microbiome of oral potentially malignant and malignant disorders: dysbiosis, loss of diversity, and pathogens enrichment[J]. Int J Mol Sci, 2023, 24(4): 3466. DOI: 10.3390/ijms24043466. |
[21] | Mohamed N, Litlekalsøy J, Ahmed IA, et al. Analysis of salivary mycobiome in a cohort of oral squamous cell carcinoma patients from Sudan identifies higher salivary carriage of malassezia as an independent and favorable predictor of overall survival[J]. Front Cell Infect Microbiol, 2021, 11: 673465. DOI: 10.3389/fcimb.2021.673465. |
[22] | Sami A, Elimairi I, Ryan CA, et al. Altered oral microbiome in Sudanese Toombak smokeless tobacco users carries a newly emerging risk of squamous cell carcinoma development and progression[J]. Sci Rep, 2023, 13(1): 6645. DOI: 10.1038/s41598-023-32892-y. |
[23] | Granato DC, Neves LX, Trino LD, et al. Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients[J]. Biochim Biophys Acta Proteins Proteom, 2021, 1869(8): 140659. DOI: 10.1016/j.bbapap.2021.140659. |
[24] | Medeiros MCD, The S, Bellile E, et al. Salivary microbiome changes distinguish response to chemoradiotherapy in patients with oral cancer[J]. Microbiome, 2023, 11(1): 268. DOI: 10.1186/s40168-023-01677-w. |
[25] | Mäkinen AI, Pappalardo VY, Buijs MJ, et al. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment[J]. Microbiome, 2023, 11(1): 171. DOI: 10.1186/s40168-023-01613-y. |
[26] |
Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment[J]. Oncotarget, 2016, 7(32): 51320-51334. DOI: 10.18632/oncotarget.9710.
pmid: 27259999 |
[27] | Kageyama S, Nagao YK, Ma JL, et al. Compositional shift of oral microbiota following surgical resection of tongue cancer[J]. Front Cell Infect Microbiol, 2020, 10: 600884. DOI: 10.3389/fcimb.2020.600884. |
[28] | Fotedar V, Ganju S, Fotedar S, et al. Oral microflora among oral cancer patients undergoing radiotherapy in regional cancer center, indira gandhi medical college, shimla[J]. Indian J Med Paediatr Oncol, 2019, 40(5): S61-S64. DOI: 10.4103/ijmpo.ijmpo_247_17. |
[29] | Maurya R, Rastogi M, Sen M, et al. Effect of chemo-radiotherapy on salivary flora of oral cancer patients[J]. J Pure Appl Microbiol, 2021, 15(3): 1501-1507. DOI: 10.22207/jpam.15.3.44. |
[30] | Anjali K, Arun AB, Bastian TS, et al. Oral microbial profile in oral cancer patients before and after radiation therapy in a cancer care center—a prospective study[J]. J Oral Maxillofac Pathol, 2020, 24(1): 117-124. DOI: 10.4103/jomfp.JOMFP_213_19. |
[31] |
Rui MY, Zhang XY, Huang JY, et al. The baseline oral microbiota predicts the response of locally advanced oral squamous cell carcinoma patients to induction chemotherapy: a prospective longitudinal study[J]. Radiother Oncol, 2021, 164: 83-91. DOI: 10.1016/j.radonc.2021.09.013.
pmid: 34571091 |
[32] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. DOI: 10.3760/cma.j.cn371439-20230413-00083. |
[33] | 高敏, 冯静, 王丽, 等. 微生物群与肺癌的早期诊断及辅助治疗[J]. 国际肿瘤学杂志, 2022, 49(4): 247-251. DOI: 10.3760/cma.j.cn371439-20220208-00045. |
[34] |
Wang J, Sun F, Lin XY, et al. Cytotoxic T cell responses to streptococcus are associated with improved prognosis of oral squamous cell carcinoma[J]. Exp Cell Res, 2018, 362(1): 203-208. DOI: 10.1016/j.yexcr.2017.11.018.
pmid: 29154820 |
[35] | Zheng DW, Deng WW, Song WF, et al. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma[J]. Nat Biomed Eng, 2022, 6(1): 32-43. DOI: 10.1038/s41551-021-00807-9. |
[36] | Wang Z, Zhou YJ, Han Q, et al. Synonymous point mutation of gtfB gene caused by therapeutic X-rays exposure reduced the biofilm formation and cariogenic abilities of streptococcus mutans[J]. Cell Biosci, 2021, 11(1): 91. DOI: 10.1186/s13578-021-00608-2. |
[37] | Neuzillet C, Marchais M, Vacher S, et al. Prognostic value of intratumoral fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients[J]. Sci Rep, 2021, 11(1): 7870. DOI: 10.1038/s41598-021-86816-9. |
[38] | Geng FX, Zhang YJ, Lu Z, et al. Fusobacterium nucleatum caused DNA damage and promoted cell proliferation by the Ku70/ p53 pathway in oral cancer cells[J]. DNA Cell Biol, 2020, 39(1): 144-151. DOI: 10.1089/dna.2019.5064. |
[39] | Lee J, Roberts JS, Atanasova KR, et al. Human primary epithelial cells acquire an epithelial-mesenchymal-transition phenotype during long-term infection by the oral opportunistic pathogen, porphyromonas gingivalis[J]. Front Cell Infect Microbiol, 2017, 7: 493. DOI: 10.3389/fcimb.2017.00493. |
[40] |
Liu S, Zhou X, Peng X, et al. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack[J]. J Immunol, 2020, 205(1): 282-289. DOI: 10.4049/jimmunol.1901138.
pmid: 32471882 |
[41] | Hu XY, Shen X, Tian JX. The effects of periodontitis associated microbiota on the development of oral squamous cell carcinoma[J]. Biochem Biophys Res Commun, 2021, 576: 80-85. DOI: 10. 1016/j.bbrc.2021.07.092. |
[42] | Wei W, Li J, Shen X, et al. Oral microbiota from periodontitis promote oral squamous cell carcinoma development via γδ T cell activation[J]. mSystems, 2022, 7(5): e0046922. DOI: 10.1128/msystems.00469-22. |
[1] | 倪国英, 黄骞, 梁洪享, 杨志勇, 丁颖丽. 晚期非小细胞肺癌患者血清miR-499、miR-362水平变化及与预后的关系分析[J]. 国际肿瘤学杂志, 2024, 51(8): 487-492. |
[2] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[3] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[4] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[5] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[6] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[7] | 万芳, 杨钢, 李睿, 万启晶. 食管癌患者血清miR-497、miR-383水平及临床意义[J]. 国际肿瘤学杂志, 2024, 51(4): 204-209. |
[8] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[9] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[10] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[11] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[12] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[13] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
[14] | 金旭东, 陈忠坚, 毛伟敏. MTAP基因在恶性间皮瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 99-104. |
[15] | 黄镇, 陈永顺. 循环肿瘤DNA在肝细胞癌诊疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 59-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||