[1] |
Haymart MR. Progress and challenges in thyroid cancer management[J]. Endocr Pract, 2021, 27(12): 1260-1263. DOI: 10.1016/j.eprac.2021.09.006.
|
[2] |
Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2019, 30(12): 1856-1883. DOI: 10.1093/annonc/mdz400.
pmid: 31987292
|
[3] |
Liu JR, Liu YQ, Lin YS, et al. Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy[J]. Endocrinol Metab (Seoul), 2019, 34(3): 215-225. DOI: 10.3803/EnM.2019.34.3.215.
|
[4] |
Singh A, Ham J, Po JW, et al. The genomic landscape of thyroid cancer tumourigenesis and implications for immunotherapy[J]. Cells, 2021, 10(5): 1082. DOI:10.3390/cells10051082.
|
[5] |
Riesco-Eizaguirre G, Santisteban P, De la Vieja A. The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues[J]. Endocr Relat Cancer, 2021, 28(10): T141-T165. DOI: 10.1530/ERC-21-0217.
|
[6] |
Cazarin J, Dupuy C, Pires de Carvalho D. Redox homeostasis in thyroid cancer: implications in Na+/I- symporter (NIS) regulation[J]. Int J Mol Sci, 2022, 23(11): 35682803. DOI: 10.3390/ijms23116129.
|
[7] |
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS[J]. Theranostics, 2021, 11(13): 6251-6277. DOI: 10.7150/thno.57689.
pmid: 33995657
|
[8] |
Hu JW, Yuan IJ, Mirshahidi S, et al. Thyroid carcinoma: phenotypic features, underlying biology and potential relevance for targeting therapy[J]. Int J Mol Sci, 2021, 22(4): 1950. DOI:10.3390/ijms22041950.
|
[9] |
Cai X, Wang R, Tan J, et al. Mechanisms of regulating NIS transport to the cell membrane and redifferentiation therapy in thyroid cancer[J]. Clin Transl Oncol, 2021, 23(12): 2403-2414. DOI: 10.1007/s12094-021-02655-0.
pmid: 34100218
|
[10] |
Dunn LA, Sherman EJ, Baxi SS, et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428. DOI:10.1210/jc.2018-01478.
pmid: 30256977
|
[11] |
Ho AL, Dedecjus M, Wirth LJ, et al. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: a phase Ⅲ, randomized, placebo-controlled trial (ASTRA)[J]. J Clin Oncol, 2022, 40(17): 1870-1878. DOI: 10.1200/JCO.21.00714.
|
[12] |
Jaber T, Waguespack SG, Cabanillas ME, et al. Targeted therapy in advanced thyroid cancer to resensitize tumors to radioactive iodine[J]. J Clin Endocrinol Metab, 2018, 103(10): 3698-3705. DOI: 10.1210/jc.2018-00612.
pmid: 30032208
|
[13] |
Iravani A, Solomon B, Pattison DA, et al. Mitogen-activated protein kinase pathway inhibition for redifferentiation of radioiodine refractory differentiated thyroid cancer: an evolving protocol[J]. Thyroid, 2019, 29(11): 1634-1645. DOI: 10.1089/thy.2019.0143.
pmid: 31637953
|
[14] |
Leboulleux S, Do Cao C, Zerdoud S, et al. A phase Ⅱ redifferentiation trial with dabrafenib-trametinib and 131I in metastatic radioactive iodine refractory BRAF p.V600E-mutated differentiated thyroid cancer[J]. Clin Cancer Res, 2023, 29(13): 2401-2409. DOI: 10.1158/1078-0432.CCR-23-0046.
|
[15] |
Tchekmedyian V, Dunn L, Sherman E, et al. Enhancing radioiodine incorporation in BRAF-mutant, radioiodine-refractory thyroid cancers with vemurafenib and the anti-ErbB3 monoclonal antibody CDX-3379: results of a pilot clinical trial[J]. Thyroid, 2022, 32(3): 273-282. DOI: 10.1089/thy.2021.0565.
pmid: 35045748
|
[16] |
National Cancer Institute (NCI). Dabrafenib and lapatinib in treating patients with refractory thyroid cancer that cannot be removed by surgery[EB/OL]. (2023-09-20) [2023-12-21]. https://classic.clinicaltrials.gov/ct2/show/NCT01947023.
|
[17] |
Nikitski AV, Condello V, Divakaran SS, et al. Inhibition of ALK-signaling overcomes STRN-ALK-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells[J]. Thyroid, 2023, 33(4): 464-473. DOI: 10.1089/thy.2022.0533.
|
[18] |
Song J, Qiu W, Deng X, et al. A somatic mutation of RasGRP3 decreases Na+/I- symporter expression in metastases of radioactive iodine-refractory thyroid cancer by stimulating the Akt signaling pathway[J]. Am J Cancer Res, 2018, 8(9): 1847-1855.
|
[19] |
Hanna GJ, Busaidy NL, Chau NG, et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: a phase Ⅱ study[J]. Clin Cancer Res, 2018, 24(7): 1546-1553. DOI: 10.1158/1078-0432.CCR-17-2297.
|
[20] |
Zhang K, Li C, Liu J, et al. DNA methylation alterations as therapeutic prospects in thyroid cancer[J]. J Endocrinol Invest, 2019, 42(4): 363-370. DOI: 10.1007/s40618-018-0922-0.
pmid: 29992502
|
[21] |
Fu H, Cheng L, Sa R, et al. Combined tazemetostat and MAPKi enhances differentiation of papillary thyroid cancer cells harbou-ring BRAFV600E by synergistically decreasing global trimethylation of H3K27[J]. J Cell Mol Med, 2020, 24(6): 3336-3345. DOI: 10.1111/jcmm.15007.
|
[22] |
Wächter S, Damanakis AI, Elxnat M, et al. Epigenetic modifications in thyroid cancer cells restore NIS and radio-iodine uptake and promote cell death[J]. J Clin Med, 2018, 7(4): 61. DOI:10.3390/jcm7040061.
|
[23] |
Groener JB, Gelen D, Mogler C, et al. BRAFV600E and retinoic acid in radioiodine-refractory papillary thyroid cancer[J]. Horm Metab Res, 2019, 51(1): 69-75. DOI: 10.1055/a-0765-9078.
|
[24] |
Pak K, Shin S, Kim SJ, et al. Response of retinoic acid in patients with radioactive iodine-refractory thyroid cancer: a meta-analysis[J]. Oncol Res Treat, 2018, 41(3): 100-104. DOI: 10.1159/000484206.
pmid: 29485411
|