
Journal of International Oncology ›› 2026, Vol. 53 ›› Issue (2): 105-110.doi: 10.3760/cma.j.cn371439-20250810-00016
• Review • Previous Articles Next Articles
Zhao Yue1,2, Song Chenchen1,2, Liang Tianci1,2, Wang Hui1,2, Wen Tingzhi1,2, Rong Biaoxue1(
)
Received:2025-08-10
Online:2026-02-08
Published:2026-01-29
Contact:
Rong Biaoxue
E-mail:rbx3666610@163.com
Supported by:Zhao Yue, Song Chenchen, Liang Tianci, Wang Hui, Wen Tingzhi, Rong Biaoxue. Research progress of molecular targeted therapy of ROS1 gene mutation in non-small cell lung cancer[J]. Journal of International Oncology, 2026, 53(2): 105-110.
| [1] | Jeon H, Wang S, Song J, et al. Update 2025: management of non‑ small-cell lung cancer[J]. Lung, 2025, 203(1): 53. DOI: 10.1007/s00408-025-00801-x. |
| [2] | Shibuya M, Hanafusa H, Balduzzi PC. Cellular sequences related to three new onc genes of avian sarcoma virus (fps, yes, and ros) and their expression in normal and transformed cells[J]. J Virol, 1982, 42(1): 143-152. DOI: 10.1128/jvi.42.1.143-152.1982. |
| [3] | Matsushime H, Shibuya M. Tissue-specific expression of rat c-ros-1 gene and partial structural similarity of its predicted products with sev protein of Drosophila melanogaster[J]. J Virol, 1990, 64(5): 2117-2125. DOI: 10.1128/jvi.64.5.2117-2125.1990. |
| [4] |
El-Deeb IM, Yoo KH, Lee SH. ROS receptor tyrosine kinase: a new potential target for anticancer drugs[J]. Med Res Rev, 2011, 31(5): 794-818. DOI: 10.1002/med.20206.
pmid: 20687158 |
| [5] | Li S, Zhang H, Chen T, et al. Current treatment and novel insights regarding ROS1-targeted therapy in malignant tumors[J]. Cancer Med, 2024, 13(8): e7201. DOI: 10.1002/cam4.7201. |
| [6] |
Puchalski RB, Shah N, Miller J, et al. An anatomic transcriptional atlas of human glioblastoma[J]. Science, 2018, 360(6389): 660-663. DOI: 10.1126/science.aaf2666.
pmid: 29748285 |
| [7] |
Shih CH, Chang YJ, Huang WC, et al. EZH2-mediated upregulation of ROS1 oncogene promotes oral cancer metastasis[J]. Oncogene, 2017, 36(47): 6542-6554. DOI: 10.1038/onc.2017.262.
pmid: 28759046 |
| [8] |
Bajrami I, Marlow R, van de Ven M, et al. E-cadherin/ROS1 inhibitor synthetic lethality in breast cancer[J]. Cancer Discov, 2018, 8(4): 498-515. DOI: 10.1158/2159-8290.CD-17-0603.
pmid: 29610289 |
| [9] |
Furcht CM, Muñoz Rojas AR, Nihalani D, et al. Diminished functional role and altered localization of SHP2 in non-small cell lung cancer cells with EGFR-activating mutations[J]. Oncogene, 2013, 32(18): 2346-2355. DOI: 10.1038/onc.2012.240.
pmid: 22777356 |
| [10] |
Charest A, Wilker EW, Mclaughlin ME, et al. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice[J]. Cancer Res, 2006, 66(15): 7473-81. DOI: 10.1158/0008-5472.CAN-06-1193.
pmid: 16885344 |
| [11] |
Facchinetti F, Rossi G, Bria E, et al. Oncogene addiction in non-small cell lung cancer: focus on ROS1 inhibition[J]. Cancer Treat Rev, 2017, 55: 83-95. DOI: 10.1016/j.ctrv.2017.02.010.
pmid: 28342334 |
| [12] | Lim SM, Yoo JE, Lim KH, et al. Rare incidence of ROS1 rearrangement in cholangiocarcinoma[J]. Cancer Res Treat, 2017, 49(1): 185-192. DOI: 10.4143/crt.2015.497. |
| [13] | He Y, Sheng W, Hu W, et al. Different types of ROS1 fusion partners yield comparable efficacy to crizotinib[J]. Oncol Res, 2019, 27(8): 901-910. DOI: 10.3727/096504019X15509372008132. |
| [14] | Kalla C, Gruber K, Rosenwald A, et al. ROS1 gene rearrangement and expression of splice isoforms in lung cancer, diagnosed by a novel quantitative RT-PCR assay[J]. J Mod Hum Pathol, 2016, 3(1): 25-34. DOI: 10.14312/2397-6845.2016-5. |
| [15] | Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1. DOI: 10.1126/scisignal.2004088. |
| [16] | Drilon A, Jenkins C, Iyer S, et al. ROS1-dependent cancers-biology, diagnostics and therapeutics[J]. Nat Rev Clin Oncol, 2021, 18(1): 35-55. DOI: 10.1038/s41571-020-0408-9. |
| [17] |
Shaw AT, Riely GJ, Bang YJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001[J]. Ann Oncol, 2019, 30(7): 1121-1126. DOI: 10.1093/annonc/mdz131.
pmid: 31987379 |
| [18] | Michels S, Massutí B, Schildhaus HU, et al. Safety and efficacy of crizotinib in patients with advanced or metastatic ROS1-rearranged lung cancer (EUCROSS): a European phase Ⅱ clinical trial[J]. J Thorac Oncol, 2019, 14(7): 1266-1276. DOI: 10.1016/j.jtho.2019.03.020. |
| [19] | Patil T, Smith DE, Bunn PA, et al. The incidence of brain metastases in stage Ⅳ ROS1-rearranged non-small cell lung cancer and rate of central nervous system progression on crizotinib[J]. J Thorac Oncol, 2018, 13(11): 1717-1726. DOI: 10.1016/j.jtho.2018.07.001. |
| [20] |
Drilon A, Siena S, Dziadziuszko R, et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 261-270. DOI: 10.1016/S1470-2045(19)30690-4.
pmid: 31838015 |
| [21] | Dziadziuszko R, Krebs MG, De Braud F, et al. Updated integrated analysis of the efficacy and safety of entrectinib in locally advanced or metastatic ROS1 fusion-positive non-small-cell lung cancer[J]. J Clin Oncol, 2021, 39(11): 1253-1263. DOI: 10.1200/JCO.20.03025. |
| [22] |
Peters S, Gadgeel SM, Mok T, et al. Entrectinib in ROS1-positive advanced non-small cell lung cancer: the phase 2/3 BFAST trial[J]. Nat Med, 2024, 30(7): 1923-1932. DOI: 10.1038/s41591-024-03008-4.
pmid: 38898120 |
| [23] | Zhang H, Li X, Zhang Z, et al. Activity of ceritinib in crizotinib-resistant ROS1-rearranged non-small-cell lung cancer patients[J]. Medicine (Baltimore), 2023, 102(29): e33543. DOI: 10.1097/MD.0000000000033543. |
| [24] | Calles A, Alonso M, Martín-Martorell P, et al. Efficacy and safety of lorlatinib in patients with ALK- and ROS1-rearranged metastatic non-small cell lung cancer treated within the compassionate use program in Spain[J]. Cancer Treat Res Commun, 2025, 43: 100905. DOI: 10.1016/j.ctarc.2025.100905. |
| [25] | Yu ZQ, Wang M, Zhou W, et al. ROS1-positive non-small cell lung cancer (NSCLC): biology, diagnostics, therapeutics and resistance[J]. J Drug Target, 2022, 30(8): 845-857. DOI: 10.1080/1061186X.2022.2085730. |
| [26] |
Zhou Y, Jiang W, Zeng L, et al. A novel ROS1 G2032 K missense mutation mediates lorlatinib resistance in a patient with ROS1-rearranged lung adenocarcinoma but responds to nab-paclitaxel plus pembrolizumab[J]. Lung Cancer, 2020, 143: 55-59. DOI: 10.1016/j.lungcan.2020.03.019.
pmid: 32208297 |
| [27] |
Lin JJ, Choudhury NJ, Yoda S, et al. Spectrum of mechanisms of resistance to crizotinib and lorlatinib in ROS1 fusion-positive lung cancer[J]. Clin Cancer Res, 2021, 27(10): 2899-2909. DOI: 10.1158/1078-0432.CCR-21-0032.
pmid: 33685866 |
| [28] | Gainor JF, Tseng D, Yoda S, et al. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer[J]. JCO Precis Oncol, 2017, 2017: PO.17. 00063. DOI: 10.1200/PO.17.00063. |
| [29] | Ku BM, Bae YH, Lee KY, et al. Entrectinib resistance mechanisms in ROS1-rearranged non-small cell lung cancer[J]. Invest New Drugs, 2020, 38(2): 360-368. DOI: 10.1007/s10637-019-00795-3. |
| [30] | Davies KD, Mahale S, Astling DP, et al. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer[J]. PLoS One, 2013, 8(12): e82236. DOI: 10.1371/journal.pone.0082236. |
| [31] |
Dagogo-Jack I, Rooney M, Nagy RJ, et al. Molecular analysis of plasma from patients with ROS1-positive NSCLC[J]. J Thorac Oncol, 2019, 14(5): 816-824. DOI: 10.1016/j.jtho.2019.01.009.
pmid: 30664990 |
| [32] | Chen R, Jian Y, Liu Y, et al. ALK-rearranged and EGFR wild-type lung adenocarcinoma transformed to small cell lung cancer: a case report[J]. Front Oncol, 2024, 14: 1395654. DOI: 10.3389/fonc.2024.1395654. |
| [33] | Lin JJ, Langenbucher A, Gupta P, et al. Small cell transformation of ROS1 fusion-positive lung cancer resistant to ROS1 inhibition[J]. NPJ Precis Oncol, 2020, 4(1): 21. DOI: 10.1038/s41698-020-0127-9. |
| [34] | Roupakia E, Chavdoula E, Karpathiou G, et al. Canonical NF-κB promotes lung epithelial cell tumour growth by downregulating the metastasis suppressor CD82 and enhancing epithelial-to-mesenchymal cell transition[J]. Cancers (Basel), 2021, 13(17): 4302. DOI: 10.3390/cancers13174302. |
| [35] | Hubbeling H, Choudhury N, Flynn J, et al. Outcomes with local therapy and tyrosine kinase inhibition in patients with ALK/ROS1/RET-rearranged lung cancers[J]. JCO Precis Oncol, 2022, 6: e2200024. DOI: 10.1200/PO.22.00024. |
| [36] |
Tsai CJ, Yang JT, Shaverdian N, et al. Standard-of-care systemic therapy with or without stereotactic body radiotherapy in patients with oligoprogressive breast cancer or non-small-cell lung cancer (Consolidative Use of Radiotherapy to Block [CURB] oligoprogression): an open-label, randomised, controlled, phase 2 study[J]. Lancet, 2024, 403(10422): 171-182. DOI: 10.1016/S0140-6736(23)01857-3.
pmid: 38104577 |
| [37] | Schneider JL, Muzikansky A, Lin JJ, et al. A phase 2 study of lorlatinib in patients with ROS1-rearranged lung cancer with brain-only progression on crizotinib[J]. JTO Clin Res Rep, 2022, 3(7): 100347. DOI: 10.1016/j.jtocrr.2022.100347. |
| [38] | Li W, Xiong A, Yang N, et al. Efficacy and safety of taletrectinib in Chinese patients with ROS1+non-small cell lung cancer: the phase Ⅱ trust-Ⅰ study[J]. J Clin Oncol, 2024, 42(22): 2660-2670. DOI: 10.1200/JCO.24.00731. |
| [39] | van der Wel JWT, Novel strategies for rare oncogenic drivers in non-small-cell lung cancer: an update from the 2024 annual ESMO meeting[J]. Lung Cancer, 2025, 204: 108490. DOI: 10.1016/j.lungcan.2025.108490. |
| [40] | Boulanger MC, Schneider JL, Lin JJ. Advances and future directions in ros1 fusion-positive lung cancer[J]. Oncologist, 2024, 29(11): 943-956. DOI: 10.1093/oncolo/oyae205. |
| [41] | Drilon A, Camidge DR, Lin JJ, et al. Repotrectinib in ROS1 fusion-positive non-small-cell lung cancer[J]. N Engl J Med, 2024, 390(2): 118-131. DOI: 10.1056/NEJMoa2302299. |
| [42] | Schneider JL, Lin JJ, Shaw AT. ALK-positive lung cancer: a moving target[J]. Nat Cancer, 2023, 4(3): 330-343. DOI: 10.1038/s43018-023-00515-0. |
| [43] | Hartmaier RJ, Markovets AA, Ahn MJ, et al. Osimertinib plus savolitinib to overcome acquired met-mediated resistance in epidermal growth factor receptor-mutated, met-amplified non-small cell lung cancer: tatton[J]. Cancer Discov, 2023, 13(1): 98-113. DOI: 10.1158/2159-8290.CD-22-0586. |
| [44] | Dagogo-Jack I, Kiedrowski LA, Heist RS, et al. Efficacy and tolerability of ALK/MET combinations in patients with ALK-rearranged lung cancer with acquired met amplification: a retrospective analysis[J]. JTO Clin Res Rep, 2023, 4(8): 100534. DOI: 10.1016/j.jtocrr.2023.100534. |
| [45] |
Mazieres J, Drilon A, Lusque A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry[J]. Ann Oncol, 2019, 30(8): 1321-1328. DOI: 10.1093/annonc/mdz167.
pmid: 31125062 |
| [46] | Guisier F, Dubos-Arvis C, Viñas F, et al. Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced NSCLC with BRAF, HER2, or MET mutations or RET translocation: GFPC 01-2018[J]. J Thorac Oncol, 2020, 15(4): 628-636. DOI: 10.1016/j.jtho.2019.12.129. |
| [47] | Yan N, Huang S, Li L, et al. Case report: durable response to immuno-chemotherapy in a case of ros1 fusion-positive advanced lung adenocarcinoma: a case report[J]. Front Pharmacol, 2022, 13: 898623. DOI: 10.3389/fphar.2022.898623. |
| [48] | Bylicki O, Tomasini P, Radj G, et al. Atezolizumab with or without bevacizumab and platinum-pemetrexed in patients with stage ⅢB/Ⅳ non-squamous non-small cell lung cancer with EGFR mutation, ALK rearrangement or ROS1 fusion progressing after targeted therapies: a multicentre phase Ⅱ open-label non-randomised study GFPC 06-2018[J]. Eur J Cancer, 2023, 183: 38-48. DOI: 10.1016/j.ejca.2023.01.014. |
| [49] | Watanabe H, Ichihara E, Kayatani H, et al. VEGFR2 blockade augments the effects of tyrosine kinase inhibitors by inhibiting angiogenesis and oncogenic signaling in oncogene-driven non-small-cell lung cancers[J]. Cancer Sci, 2021, 112(5): 1853-1864. DOI: 10.1111/cas.14801. |
| [1] | Zhang Long, Li Jianzhen, Zhang Wei. Mechanisms of invadopodia in tumor metastasis and frontiers in therapeutic translation [J]. Journal of International Oncology, 2026, 53(2): 100-104. |
| [2] | Li Ting, Zhou Qi, Zhang Qian, Chen Jie. Research progress on resistance mechanisms of anti-PD-1/PD-L1 therapy in advanced non-small cell lung cancer [J]. Journal of International Oncology, 2026, 53(1): 57-61. |
| [3] | Che Gen, Wu Rihan, Zhu Tiantian, Dong Li. Mechanism of the cGAS-STING signaling pathway in non-small cell lung cancer and its targeted therapeutic strategies [J]. Journal of International Oncology, 2025, 52(9): 587-591. |
| [4] | Hai Yanan, Bao Wenfang, Shentu Hangxiao, Chen Jingde. Mechanism of immunotherapy resistance and the progress of post-resistance treatment for dMMR/MSI-H metastatic colorectal cancer [J]. Journal of International Oncology, 2025, 52(9): 598-602. |
| [5] | Zhao Fang, Jiang Guorong, Shi Shuyue, Xiao Jian, Ma Shaolin, Li Runpu. Observation on the therapeutic effect of atezolizumab combined with anlotinib in treating advanced non-small cell lung cancer [J]. Journal of International Oncology, 2025, 52(8): 495-501. |
| [6] | Zhang Baihong, Yue Hongyun. Novel therapeutic strategies: targeting cancer metastasis [J]. Journal of International Oncology, 2025, 52(8): 528-531. |
| [7] | Zhong Xiao, Li Butuo, Wang Linlin. Research progress of radiotherapy for brain metastases from ALK-positive NSCLC [J]. Journal of International Oncology, 2025, 52(6): 374-378. |
| [8] | Yuan Chun, Yu Xuesong, Wang Mengchao, Zhang Shao, Huang Yanbo, Wang Chaoran, Kong Fanming, Chen Liwei. New advances in the targeted therapy of EGFR exon20ins mutant advanced NSCLC [J]. Journal of International Oncology, 2025, 52(6): 382-387. |
| [9] | Tang Lei, Cai Zongyou, Chang Jianhua. Research updates of RET proto-oncogene in non-small cell lung cancer [J]. Journal of International Oncology, 2025, 52(4): 237-241. |
| [10] | Ye Yongying, Zou Yan, Chen Tianming, Wu Weili. Research progress of clock gene Period family in head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(2): 113-118. |
| [11] | Wen Bobin, Gan Jie, Wang Zheng. An experimental study on PD98059 reversing multiple drug resistance of human glioma stem cells by MEK/ERK signaling pathways [J]. Journal of International Oncology, 2025, 52(12): 737-744. |
| [12] | Liu Xiaoxuan, Guo Zhi. Research advances in tumor microenvironment and lymphoma treatment [J]. Journal of International Oncology, 2025, 52(12): 795-800. |
| [13] | Song Ziyan, Zhang Wenjing, Wang Zhendan, Zhao Zhikun, Ma Ying, Li Sheng. Detection of PD-L1 in circulating tumor cells of non-small cell lung cancer and its clinical applications [J]. Journal of International Oncology, 2025, 52(10): 641-645. |
| [14] | Huang Zhen, Yan Fei, Ma Yanling, Sun Jianhai. Research progress in targeted and immunotherapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(1): 53-59. |
| [15] | Huang Bo, Wang Peng. Early predictive value of serum sCD163, IFN-γ combined with TGF-β1 in the development of radiation-induced pneumonia in NSCLC patients [J]. Journal of International Oncology, 2024, 51(9): 563-568. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||