Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (2): 106-110.doi: 10.3760/cma.j.cn371439-20210607-00017
• Reviews • Previous Articles Next Articles
Xu Lu1, Long Jinhua2, Jin Feng2(), Wu Weili2
Received:
2021-06-07
Revised:
2021-12-15
Online:
2022-02-08
Published:
2022-03-11
Contact:
Jin Feng
E-mail:jinf8865@yeah.net
Supported by:
Xu Lu, Long Jinhua, Jin Feng, Wu Weili. Clinical significance of expression of tumor immunogenic cell death related molecules[J]. Journal of International Oncology, 2022, 49(2): 106-110.
[1] |
Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy[J]. Theranostics, 2019, 9(5): 1215-1231. DOI: 10.7150/thno.32648.
doi: 10.7150/thno.32648 pmid: 30867826 |
[2] |
Aliru ML, Schoenhals JE, Venkatesulu BP, et al. Radiation therapy and immunotherapy: what is the optimal timing or sequencing?[J]. Immunotherapy, 2018, 10(4): 299-316. DOI: 10.2217/imt-2017-0082.
doi: 10.2217/imt-2017-0082 |
[3] |
Grassberger C, Ellsworth SG, Wilks MQ, et al. Assessing the inte-ractions between radiotherapy and antitumour immunity[J]. Nat Rev Clin Oncol, 2019, 16(12): 729-745. DOI: 10.1038/s41571-019-0238-9.
doi: 10.1038/s41571-019-0238-9 pmid: 31243334 |
[4] |
Schaer DA, Geeganage S, Amaladas N, et al. The folate pathway inhibitor pemetrexed pleiotropically enhances effects of cancer immunotherapy[J]. Clin Cancer Res, 2019, 25(23): 7175-7188. DOI: 10.1158/1078-0432.CCR-19-0433.
doi: 10.1158/1078-0432.CCR-19-0433 pmid: 31409612 |
[5] |
Ye W, Gunti S, Allen CT, et al. ASTX660, an antagonist of cIAP1/2 and XIAP, increases antigen processing machinery and can enhance radiation-induced immunogenic cell death in preclinical models of head and neck cancer[J]. Oncoimmunology, 2020, 9(1): 1710398. DOI: 10.1080/2162402X.2019.1710398.
doi: 10.1080/2162402X.2019.1710398 |
[6] |
Rossi A, Pakhomova ON, Mollica PA, et al. Nanosecond pulsed electric fields induce endoplasmic reticulum stress accompanied by immunogenic cell death in murine models of lymphoma and colorectal cancer[J]. Cancers (Basel), 2019, 11(12): 2034. DOI: 10.3390/cancers11122034.
doi: 10.3390/cancers11122034 |
[7] |
Fucikova J, Spisek R, Kroemer G, et al. Calreticulin and cancer[J]. Cell Res, 2021, 31(1): 5-16. DOI: 10.1038/s41422-020-0383-9.
doi: 10.1038/s41422-020-0383-9 |
[8] |
Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer[J]. Mol Oncol, 2020, 14(12): 2994-3006. DOI: 10.1002/1878-0261.12851.
doi: 10.1002/1878-0261.12851 pmid: 33179413 |
[9] |
Sethuraman SN, Singh MP, Patil G, et al. Novel calreticulin-nano-particle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity[J]. Theranostics, 2020, 10(8): 3397-3412. DOI: 10.7150/thno.42243.
doi: 10.7150/thno.42243 pmid: 32206098 |
[10] |
Kim SG, Park MY, Kim CH, et al. Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination[J]. Vaccine, 2008, 26(50): 6433-6440. DOI: 10.1016/j.vaccine.2008.08.072.
doi: 10.1016/j.vaccine.2008.08.072 |
[11] |
Truxova I, Kasikova L, Salek C, et al. Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients[J]. Haematologica, 2020, 105(7): 1868-1878. DOI: 10.3324/haematol.2019.223933.
doi: 10.3324/haematol.2019.223933 pmid: 31582537 |
[12] |
Liu P, Zhao L, Loos F, et al. Immunosuppression by mutated calreticulin released from malignant cells[J]. Mol Cell, 2020, 77(4): 748-760.e9. DOI: 10.1016/j.molcel.2019.11.004.
doi: 10.1016/j.molcel.2019.11.004 |
[13] |
Yanai H, Ban T, Taniguchi T. Essential role of high-mobility group box proteins in nucleic acid-mediated innate immune responses[J]. J Intern Med, 2011, 270(4): 301-308. DOI: 10.1111/j.1365-2796.2011.02433.x.
doi: 10.1111/j.1365-2796.2011.02433.x pmid: 21793952 |
[14] |
Xie Y, Yu N, Chen Y, et al. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway[J]. Mol Med Rep, 2017, 16(2): 1691-1700. DOI: 10.3892/mmr.2017.6772.
doi: 10.3892/mmr.2017.6772 |
[15] |
Martin SJ. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system[J]. FEBS J, 2016, 283(14): 2599-2615. DOI: 10.1111/febs.13775.
doi: 10.1111/febs.13775 |
[16] |
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity[J]. EMBO Rep, 2020, 21(4): e49799. DOI: 10.15252/embr.201949799.
doi: 10.15252/embr.201949799 |
[17] |
Rapoport BL, Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy[J]. Int J Mol Sci, 2019, 20(4): 959. DOI: 10.3390/ijms20040959.
doi: 10.3390/ijms20040959 |
[18] |
Zhang Y, Zheng L. Tumor immunotherapy based on tumor-derived heat shock proteins (Review)[J]. Oncol Lett, 2013, 6(6): 1543-1549. DOI: 10.3892/ol.2013.1616.
doi: 10.3892/ol.2013.1616 |
[19] |
Garg AD, Krysko DV, Vandenabeele P, et al. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin[J]. Cancer Immunol Immunother, 2012, 61(2): 215-221. DOI: 10.1007/s00262-011-1184-2.
doi: 10.1007/s00262-011-1184-2 |
[20] |
Montico B, Nigro A, Casolaro V, et al. Immunogenic apoptosis as a novel tool for anticancer vaccine development[J]. Int J Mol Sci, 2018, 19(2): 594. DOI: 10.3390/ijms19020594.
doi: 10.3390/ijms19020594 |
[21] |
Santos TG, Martins VR, Hajj GNM. Unconventional secretion of heat shock proteins in cancer[J]. Int J Mol Sci, 2017, 18(5): 946. DOI: 10.3390/ijms18050946.
doi: 10.3390/ijms18050946 |
[22] |
杨督, 田同德, 岳文莉. 免疫原性细胞死亡相关分子的表达机制及对免疫的调节[J]. 现代肿瘤医学, 2020, 28(2): 316-320. DOI: 10.3969/j.issn.1672-4992.2020.02.032.
doi: 10.3969/j.issn.1672-4992.2020.02.032 |
[23] |
Exner R, Sachet M, Arnold T, et al. Prognostic value of HMGB1 in early breast cancer patients under neoadjuvant chemotherapy[J]. Cancer Med, 2016, 5(9): 2350-2358. DOI: 10.1002/cam4.827.
doi: 10.1002/cam4.827 |
[24] |
Wang Z, Yang CH, Li L, et al. Tumor-derived HMGB1 induces CD62Ldim neutrophil polarization and promotes lung metastasis in triple-negative breast cancer[J]. Oncogenesis, 2020, 9(9): 82. DOI: 10.1038/s41389-020-00267-x.
doi: 10.1038/s41389-020-00267-x |
[25] |
Bains SJ, Abrahamsson H, Flatmark K, et al. Immunogenic cell death by neoadjuvant oxaliplatin and radiation protects against metastatic failure in high-risk rectal cancer[J]. Cancer Immunol Immunother, 2020, 69(3): 355-364. DOI: 10.1007/s00262-019-02458-x.
doi: 10.1007/s00262-019-02458-x |
[26] |
Lau TS, Chan LKY, Man GCW, et al. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-depen-dent exocytosis[J]. Cancer Immunol Res, 2020, 8(8): 1099-1111. DOI: 10.1158/2326-6066.CIR-19-0616.
doi: 10.1158/2326-6066.CIR-19-0616 |
[27] |
Solari JIG, Filippi-Chiela E, Pilar ES, et al. Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells[J]. BMC Cancer, 2020, 20(1): 474. DOI: 10.1186/s12885-020-06964-5.
doi: 10.1186/s12885-020-06964-5 |
[28] |
Flieswasser T, Van Loenhout J, Freire Boullosa L, et al. Clinically relevant chemotherapeutics have the ability to induce immunogenic cell death in non-small cell lung cancer[J]. Cells, 2020, 9(6): 1474. DOI: 10.3390/cells9061474.
doi: 10.3390/cells9061474 |
[29] |
Li C, Sun H, Wei W, et al. Mitoxantrone triggers immunogenic prostate cancer cell death via p53-dependent PERK expression[J]. Cell Oncol (Dordr), 2020, 43(6): 1099-1116. DOI: 10.1007/s13402-020-00544-2.
doi: 10.1007/s13402-020-00544-2 |
[30] |
Asna N, Livoff A, Batash R, et al. Radiation therapy and immunotherapy—a potential combination in cancer treatment[J]. Curr Oncol, 2018, 25(5): e454-e460. DOI: 10.3747/co.25.4002.
doi: 10.3747/co.25.4002 |
[31] |
Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death[J]. Nat Med, 2007, 13(1): 54-61. DOI: 10.1038/nm1523.
doi: 10.1038/nm1523 |
[32] |
Caetano MS, Younes AI, Barsoumian HB, et al. Triple therapy with MerTK and PD1 inhibition plus radiotherapy promotes abscopal antitumor immune responses[J]. Clin Cancer Res, 2019, 25(24): 7576-7584. DOI: 10.1158/1078-0432.CCR-19-0795.
doi: 10.1158/1078-0432.CCR-19-0795 |
[33] |
Yang W, Zhang F, Deng H, et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy[J]. ACS Nano, 2020, 14(1): 620-631. DOI: 10.1021/acsnano.9b07212.
doi: 10.1021/acsnano.9b07212 |
[34] |
Kopecka J, Godel M, Dei S, et al. Insights into P-glycoprotein inhibitors: new inducers of immunogenic cell death[J]. Cells, 2020, 9(4): 1033. DOI: 10.3390/cells9041033.
doi: 10.3390/cells9041033 |
[35] |
Phung CD, Nguyen HT, Choi JY, et al. Reprogramming the T cell response to cancer by simultaneous, nanoparticle-mediated PD-L1 inhibition and immunogenic cell death[J]. J Control Release, 2019, 315:126-138. DOI: 10.1016/j.jconrel.2019.10.047.
doi: 10.1016/j.jconrel.2019.10.047 |
[36] |
Wang-Bishop L, Wehbe M, Shae D, et al. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma[J]. J Immunother Cancer, 2020, 8(1): e000282. DOI: 10.1136/jitc-2019-000282.
doi: 10.1136/jitc-2019-000282 |
[37] |
Dai Z, Tang J, Gu Z, et al. Eliciting immunogenic cell death via a unitized nanoinducer[J]. Nano Lett, 2020, 20(9): 6246-6254. DOI: 10.1021/acs.nanolett.0c00713.
doi: 10.1021/acs.nanolett.0c00713 |
[38] |
Wen Y, Chen X, Zhu X, et al. Photothermal-chemotherapy integrated nanoparticles with tumor microenvironment response enhanced the induction of immunogenic cell death for colorectal cancer efficient treatment[J]. ACS Appl Mater Interfaces, 2019, 11(46): 43393-43408. DOI: 10.1021/acsami.9b17137.
doi: 10.1021/acsami.9b17137 |
[39] |
Heshmati Aghda N, Abdulsahib SM, Severson C, et al. Induction of immunogenic cell death of cancer cells through nanoparticle-mediated dual chemotherapy and photothermal therapy[J]. Int J Pharm, 2020, 589:119787. DOI: 10.1016/j.ijpharm.2020.119787.
doi: 10.1016/j.ijpharm.2020.119787 |
[40] |
Turubanova VD, Balalaeva IV, Mishchenko TA, et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine[J]. J Immunother Cancer, 2019, 7(1): 350. DOI: 10.1186/s40425-019-0826-3.
doi: 10.1186/s40425-019-0826-3 pmid: 31842994 |
[41] |
Ma J, Ramachandran M, Jin C, et al. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer[J]. Cell Death Dis, 2020, 11(1): 48. DOI: 10.1038/s41419-020-2236-3.
doi: 10.1038/s41419-020-2236-3 |
[42] |
Wang X, Shao X, Gu L, et al. Targeting STAT3 enhances NDV-induced immunogenic cell death in prostate cancer cells[J]. J Cell Mol Med, 2020, 24(7): 4286-4297. DOI: 10.1111/jcmm.15089.
doi: 10.1111/jcmm.15089 |
[43] |
Voloshin T, Kaynan N, Davidi S, et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy[J]. Can-cer Immunol Immunother, 2020, 69(7): 1191-1204. DOI: 10.1007/s00262-020-02534-7.
doi: 10.1007/s00262-020-02534-7 |
[1] | Zhang Yanqiang, Zhang Yang, Li Chunhua, Zhang Dianping, Liu Baoguo, Peng Xiangeng. High mobility group protein B1 and breast cancer [J]. Journal of International Oncology, 2020, 47(5): 297-300. |
[2] | LUO Cong, TAO Ning. Chemotherapy and tumor immunogenic cell death [J]. Journal of International Oncology, 2017, 44(5): 369-372. |
[3] | Chen Gang, Zhuang Fangcheng. High mobility group box 1 and its role in cervical cancer [J]. Journal of International Oncology, 2017, 44(3): 235-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||