Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (7): 390-399.doi: 10.3760/cma.j.cn371439-20220429-00076
• Original Articles • Previous Articles Next Articles
Lin Yongjuan, Li Huiying, Yin Zhenyu, Guo Aibin, Xie Yu()
Received:
2022-04-29
Revised:
2022-06-14
Online:
2022-07-08
Published:
2022-09-19
Contact:
Xie Yu
E-mail:xieyu2101@163.com
Supported by:
Lin Yongjuan, Li Huiying, Yin Zhenyu, Guo Aibin, Xie Yu. Investigation of cerebrospinal fluid metabolites in patients with leptomeningeal metastases from lung adenocarcinoma based on untargeted metabolomics[J]. Journal of International Oncology, 2022, 49(7): 390-399.
"
基本指标 | LM组(n=46) | 对照组(n=48) | χ2/Z值 | P值 |
---|---|---|---|---|
性别 | ||||
男 | 30(65.22) | 26(54.17) | 1.19 | 0.275 |
女 | 16(34.78) | 22(45.83) | ||
年龄(岁) | 57.00(52.00,63.00) | 57.50(52.00,64.00) | -0.41 | 0.210 |
吸烟史 | ||||
是 | 16(34.78) | 25(52.08) | 2.86 | 0.091 |
否 | 30(65.22) | 23(47.92) | ||
KPS评分(分) | ||||
<70 | 16(34.78) | 13(27.08) | 0.65 | 0.419 |
≥70 | 30(65.22) | 35(72.92) | ||
颅内压(kPa) | ||||
>1.77 | 30(65.22) | 35(72.92) | 0.65 | 0.419 |
≤1.77 | 16(34.78) | 13(27.08) |
"
代谢物 | 保留时间(min) | 质荷比 | 变化倍数 | VIP | P值 | 代谢物 | 保留时间(min) | 质荷比 | 变化倍数 | VIP | P值 |
---|---|---|---|---|---|---|---|---|---|---|---|
胆碱 | 0.24 | 104.11 | 15.28 | 1.16 | 0.024 | 5-羟基-L色氨酸 | 10.22 | 220.22 | 20.34 | 1.16 | 0.003 |
酪氨酸 | 0.62 | 182.08 | 691.81 | 1.28 | 0.001 | 花生四烯酸 | 10.26 | 303.24 | 2.62 | 1.10 | 0.025 |
吡哆醇 | 0.63 | 184.06 | 11.54 | 1.47 | 0.029 | γ-亚麻酸 | 12.77 | 280.45 | 98.45 | 1.21 | 0.012 |
苯丙氨酸 | 0.65 | 164.07 | 896.92 | 1.20 | <0.001 | 泛酸 | 0.55 | 219.24 | 4.15 | 1.02 | 0.012 |
酮亮氨酸 | 1.50 | 129.06 | 2.61 | 1.35 | 0.006 | 色氨酸 | 0.64 | 205.10 | 589.27 | 1.48 | 0.014 |
3-磷酸甘油 | 1.52 | 172.07 | 44.22 | 1.13 | 0.016 | 甘油醛 | 0.64 | 89.02 | 32.67 | 1.71 | 0.017 |
L-组氨酸 | 2.19 | 254.11 | 6.66 | 1.27 | 0.005 | 鸟嘌呤 | 1.23 | 145.67 | 101.36 | 1.11 | 0.003 |
前列腺素B2 | 3.36 | 334.45 | 26.44 | 1.29 | 0.025 | 腺苷A | 2.05 | 246.30 | 25.17 | 1.71 | 0.005 |
乳酸 | 5.65 | 85.20 | 21.62 | 1.22 | 0.002 | 三磷酸鸟苷 | 2.35 | 523.18 | 646.31 | 1.00 | 0.006 |
丙酮酸 | 5.79 | 79.89 | 694.81 | 1.29 | <0.001 | 一磷酸腺苷 | 7.06 | 347.22 | 44.11 | 1.72 | <0.001 |
2-羟基丁酸 | 5.80 | 113.67 | 164.31 | 1.35 | 0.004 | 赖氨酸 | 12.88 | 135.53 | 79.35 | 1.73 | 0.004 |
丙氨酸 | 6.59 | 74.12 | 140.33 | 1.31 | 0.015 | 谷氨酰胺 | 14.32 | 164.23 | 69.53 | 1.77 | 0.001 |
白三烯B4 | 7.06 | 335.22 | 70.72 | 1.05 | 0.011 | 葡萄糖 | 17.12 | 124.50 | 512.52 | 1.06 | <0.001 |
α-亚麻酸 | 7.07 | 277.22 | 78.94 | 1.17 | 0.019 | 乙酸 | 18.56 | 65.67 | 37.32 | 1.09 | 0.001 |
甘油磷酸胆碱 | 8.04 | 237.12 | 24.95 | 1.15 | 0.042 | 核糖醇 | 19.56 | 125.67 | 2.95 | 1.66 | 0.005 |
"
序号 | 信号通路 | P值 |
---|---|---|
1 | 氨基酰基-tRNA生物合成 | 1.63×10-5 |
2 | 糖酵解及糖代谢合成 | 1.11×10-3 |
3 | 苯丙氨酸、酪氨酸和色氨酸生物合成 | 1.98×10-3 |
4 | 丙酮酸代谢 | 7.14×10-3 |
5 | 苯丙氨酸代谢 | 1.39×10-2 |
6 | 丙氨酸、天冬氨酸和谷氨酸代谢 | 1.41×10-2 |
7 | 乙醛酸盐和二羧酸酯代谢 | 2.03×10-2 |
8 | 不饱和脂肪酸的生物合成 | 2.78×10-2 |
9 | 脂代谢 | 2.77×10-2 |
10 | 嘌呤代谢 | 3.04×10-2 |
11 | 谷氨酰胺代谢 | 0.011 |
12 | 氮代谢 | 0.021 |
13 | 甘氨酸、丝氨酸和苏氨酸代谢 | 0.022 |
14 | 缬氨酸、亮氨酸和异亮氨酸生物合成 | 0.025 |
15 | 花生四烯酸酸代谢 | 0.030 |
16 | 泛醌和其他萜类化合物-醌生物合成 | 0.036 |
17 | 维生素B6代谢 | 0.037 |
18 | 生物素代谢 | 0.040 |
19 | 色氨酸代谢 | 0.041 |
20 | 酪氨酸代谢 | 0.048 |
[1] |
Zheng MM, Tu HY, Yang JJ, et al. Clinical outcomes of non-small cell lung cancer patients with leptomeningeal metastases after immune checkpoint inhibitor treatments[J]. Eur J Cancer, 2021, 150: 23-30. DOI: 10.1016/j.ejca.2021.03.037.
doi: 10.1016/j.ejca.2021.03.037 |
[2] |
Reckamp KL. Targeted therapy for patients with metastatic non-small cell lung cancer[J]. J Natl Compr Canc Netw, 2018, 16(5S): 601-604. DOI: 10.6004/jnccn.2018.0046.
doi: 10.6004/jnccn.2018.0046 |
[3] |
Cheng HY, Perez-Soler R. Leptomeningeal metastases in non-small-cell lung cancer[J]. Lancet Oncol, 2018, 19(1): e43-e55. DOI: 10.1016/S1470-2045(17)30689-7.
doi: 10.1016/S1470-2045(17)30689-7 |
[4] |
杨晨光, 徐志巧. 驱动基因阳性晚期非小细胞肺癌靶向治疗[J]. 国际肿瘤学杂志, 2021, 48(4): 235-240. DOI: 10.3760/cma.j.cn371439-20200911-00047.
doi: 10.3760/cma.j.cn371439-20200911-00047 |
[5] |
Pellerino A, Brastianos PK, Rudà R, et al. Leptomeningeal metastases from solid tumors: recent advances in diagnosis and molecular approaches[J]. Cancers (Basel), 2021, 13(12): 2888. DOI: 10.3390/cancers13122888.
doi: 10.3390/cancers13122888 |
[6] |
杨蕾, 张传玉, 张在先, 等. 非小细胞肺癌影像基因组学[J]. 国际肿瘤学杂志, 2020, 47(9): 555-559. DOI: 10.3760/cma.j.cn371439-20200423-00077.
doi: 10.3760/cma.j.cn371439-20200423-00077 |
[7] |
Gkountakos A, Centonze G, Vita E, et al. Identification of targetable liabilities in the dynamic metabolic profile of EGFR-mutant lung adenocarcinoma: thinking beyond genomics for overcoming EGFR TKI resistance[J]. Biomedicines, 2022, 10(2): 277. DOI: 10.3390/biomedicines10020277.
doi: 10.3390/biomedicines10020277 |
[8] |
Wang Y, Liu Y, Chen R, et al. Metabolomic characterization of cerebrospinal fluid from intracranial bacterial infection pediatric patients: a pilot study[J]. Molecules, 2021, 26(22): 6871. DOI: 10.3390/molecules26226871.
doi: 10.3390/molecules26226871 |
[9] |
Miyamoto S, Taylor SL, Barupal DK, et al. Systemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometry[J]. Metabolites, 2015, 5(2): 192-210. DOI: 10.3390/metabo5020192.
doi: 10.3390/metabo5020192 pmid: 25859693 |
[10] |
Han ZG, Ke MX, Liu X, et al. Molecular imaging, how close to clinical precision medicine in lung, brain, prostate and breast cancers[J]. Mol Imaging Biol, 2022, 24(1): 8-22. DOI: 10.1007/s11307-021-01631-y.
doi: 10.1007/s11307-021-01631-y |
[11] |
Klupczynska A, Dereziński P, Garrett TJ, et al. Study of early stage non-small-cell lung cancer using Orbitrap-based global serum metabolomics[J]. J Cancer Res Clin Oncol, 2017, 143(4): 649-659. DOI: 10.1007/s00432-017-2347-0.
doi: 10.1007/s00432-017-2347-0 pmid: 28168355 |
[12] |
Han YS, Shi LY, Chen JX, et al. Screening and identification of potential novel lipid biomarkers for non-small cell lung cancer using ultra-high performance liquid chromatography tandem mass spectrometry[J]. Anat Rec (Hoboken), 2022, 305(5): 1087-1099. DOI: 10.1002/ar.24725.
doi: 10.1002/ar.24725 |
[13] |
Zhang SN, Li XZ, Liu SM, et al. Metabonomic study of the effects of acanthopanax senticosus on peripheral system of rats[J]. Planta Med, 2015, 81(9): 722-732. DOI: 10.1055/s-0035-1545915.
doi: 10.1055/s-0035-1545915 |
[14] |
Rodriguez-Martinez A, Posma JM, Ayala R, et al. MWASTools: an R/bioconductor package for metabolome-wide association studies[J]. Bioinformatics, 2018, 34(5): 890-892. DOI: 10.1093/bioinformatics/btx477.
doi: 10.1093/bioinformatics/btx477 pmid: 28961702 |
[15] |
Hwangbo N, Zhang XY, Raftery D, et al. A metabolomic aging clock using human cerebrospinal fluid[J]. J Gerontol A Biol Sci Med Sci, 2022, 77(4): 744-754. DOI: 10.1093/gerona/glab212.
doi: 10.1093/gerona/glab212 |
[16] |
Yoo BC, Lee JH, Kim KH, et al. Cerebrospinal fluid metabolomic profiles can discriminate patients with leptomeningeal carcinoma-tosis from patients at high risk for leptomeningeal metastasis[J]. Oncotarget, 2017, 8(60): 101203-101214. DOI: 10.18632/oncotarget.20983.
doi: 10.18632/oncotarget.20983 |
[17] |
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications[J]. Anal Bioanal Chem, 2021, 413(24): 5927-5948. DOI: 10.1007/s00216-021-03425-1.
doi: 10.1007/s00216-021-03425-1 pmid: 34142202 |
[18] |
Sun G, Jiang F, Hu S, et al. Metabolomic analysis reveals potential biomarkers and serum metabolomic profiling in spontaneous intracerebral hemorrhage patients using UPLC/quadrupole time-of-flight MS[J]. Biomed Chromatogr, 2022, 36(1): e5241. DOI: 10.1002/bmc.5241.
doi: 10.1002/bmc.5241 |
[19] |
Wettasinghe AP, Singh N, Starcher CL, et al. Detecting attomolar DNA-damaging anticancer drug activity in cell lysates with electrochemical DNA devices[J]. ACS Sens, 2021, 6(7): 2622-2629. DOI: 10.1021/acssensors.1c00365.
doi: 10.1021/acssensors.1c00365 |
[20] |
Endo F, Tanaka Y, Tomoeda K, et al. Animal models reveal patho-physiologies of tyrosinemias[J]. J Nutr, 2003, 133(<W>6 Suppl 1):2063S-2067 S. DOI: 10.1093/jn/133.6.2063S.
doi: 10.1093/jn/133.6.2063S |
[21] |
Hu JM, Sun HT. Serum proton NMR metabolomics analysis of human lung cancer following microwave ablation[J]. Radiat Oncol, 2018, 13(1): 40. DOI: 10.1186/s13014-018-0982-5.
doi: 10.1186/s13014-018-0982-5 |
[22] |
Yu ST, Li J, Gao W, et al. Uncovering the anticancer mechanism of petroleum extracts of Farfarae Flos against Lewis lung cancer by metabolomics and network pharmacology analysis[J]. Biomed Chromatogr, 2020, 34(9): e4878. DOI: 10.1002/bmc.4878.
doi: 10.1002/bmc.4878 |
[23] |
Ding M, Li Z, Yu XA, et al. A network pharmacology-integrated metabolomics strategy for clarifying the difference between effective compounds of raw and processed Farfarae flos by ultra high-performance liquid chromatography-quadrupole-time of flight mass spectrometry[J]. J Pharm Biomed Anal, 2018, 156: 349-357. DOI: 10.1016/j.jpba.2018.05.003.
doi: 10.1016/j.jpba.2018.05.003 |
[24] |
Zhang Y, Li J, Zhang S, et al. Multifunctional spiky topological nanocapsules for the discrimination and differential inhibition of inflammation and cancer[J]. ACS Appl Mater Interfaces, 2021, 13(22): 25727-25737. DOI: 10.1021/acsami.1c04737.
doi: 10.1021/acsami.1c04737 |
[25] |
Varshavi D, Varshavi D, McCarthy N, et al. Metabonomics study of the effects of single copy mutant KRAS in the presence or absence of WT allele using human HCT116 isogenic cell lines[J]. Metabolomics, 2021, 17(12): 104. DOI: 10.1007/s11306-021-01852-w.
doi: 10.1007/s11306-021-01852-w pmid: 34822010 |
[26] |
Budinger GRS, Kohanski RA, Gan W, et al. The intersection of aging biology and the pathobiology of lung diseases: a joint NHLBI/NIA workshop[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(11): 1492-1500. DOI: 10.1093/gerona/glx090.
doi: 10.1093/gerona/glx090 |
[27] |
Tang Y, Chen Z, Fang Z, et al. Multi-omics study on biomarker and pathway discovery of chronic obstructive pulmonary disease[J]. J Breath Res, 2021, 15(4): 10. DOI: 10.1088/1752-7163/ac15ea.
doi: 10.1088/1752-7163/ac15ea |
[28] |
Wu WS, Wu HY, Wang PH, et al. LCMD: Lung Cancer Metabolome Database[J]. Comput Struct Biotechnol J, 2022, 20: 65-78. DOI: 10.1016/j.csbj.2021.12.002.
doi: 10.1016/j.csbj.2021.12.002 |
[29] |
Reichard CA, Naelitz BD, Wang Z, et al. Gut microbiome-dependent metabolic pathways and risk of lethal prostate cancer: prospective analysis of a PLCO cancer screening trial cohort[J]. Cancer Epidemiol Biomarkers Prev, 2022, 31(1): 192-199. DOI: 10.1158/1055-9965.EPI-21-0766.
doi: 10.1158/1055-9965.EPI-21-0766 |
[30] |
Cui L, Zheng D, Lee YH, et al. Metabolomics investigation reveals metabolite mediators associated with acute lung injury and repair in a murine model of influenza pneumonia[J]. Sci Rep, 2016, 6: 26076. DOI: 10.1038/srep26076.
doi: 10.1038/srep26076 |
[1] | Zhou Liya, Li Xiaoli, Cao Zixiao, Xiang Junxin, Liu Jiahui, Xia Xuemei, Li Dianming. Clinical observation of albumin-bound paclitaxel or pemetrexed combined with cisplatin in the treatment of advanced mutation negative lung adenocarcinoma [J]. Journal of International Oncology, 2021, 48(10): 596-601. |
[2] | Zhang Bei, Wang Ye, Hu Jun, Li Mei, Wang Jun, Mu Yunfeng, Yang Bo. Atypical MSCT pleomorphic signs in metastatic adenocarcinoma and squamous cell carcinoma of the lung [J]. Journal of International Oncology, 2021, 48(10): 591-595. |
[3] | Fan Yangyang, Wang Ying, Yuan Feng, Du Shanping, He Rongrong, Jia Yan. Study on the mechanism of MALAT1 targeting miR-142-3p in ovarian cancer chemotherapy resistance [J]. Journal of International Oncology, 2020, 47(2): 82-89. |
[4] | JI Qing. Significance of MALAT1,COX-2,β-catenin,MMP-3 and MMP-9 in the occurrence and development of colorectal carcinoma [J]. Journal of International Oncology, 2012, 39(6): 477-480. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||