Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (8): 470-483.doi: 10.3760/cma.j.cn371439-20250312-00082
Previous Articles Next Articles
Received:
2025-03-12
Revised:
2025-06-06
Online:
2025-08-08
Published:
2025-09-15
"
药物种类 | 发生率(%) | 代表药物 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
任何级别 ALT或AST升高 | ≥3级ALT或 AST升高 | 任何级别 胆红素升高 | ≥3级胆红素 升高 | 任何级别 ALP升高 | ≥3级ALP 升高 | |||||||||
化疗药物[ | 烷化剂 | 10a | 0~11a | 3.3 | 0 | 卡司莫汀、环磷酰胺 | ||||||||
3.3b | 0~5b | |||||||||||||
铂类 | 6~57a | 1~3a | 顺铂、奥沙利铂 | |||||||||||
17~51b | 1~3b | |||||||||||||
二氢叶酸还原酶 抑制剂 | 10~71a | 3~12a | 培美曲塞、甲氨蝶呤 | |||||||||||
8~53b | <2~6b | |||||||||||||
胸腺核苷合成酶 抑制剂 | 19.5a | 0.2a | 11.9 | 0.7 | 14.4 | 卡培他滨 | ||||||||
19.0b | 0.2b | |||||||||||||
DNA多聚酶 抑制剂 | 68a | 10a | 13 | <3 | 55 | 7 | 吉西他滨、地西他滨、阿糖胞苷 | |||||||
67b | 8b | |||||||||||||
作用于核酸 转录的药物 | 17.1a | 9.8 | 0 | 多柔比星 | ||||||||||
29.3b | ||||||||||||||
DNA拓扑异构 酶Ⅰ抑制剂 | 19 | 2.4a | 14.3 | 0 | 伊立替康、拓扑替康 | |||||||||
21.4b | 2.4b | |||||||||||||
干扰微管蛋白 合成的药物 | 23.3a | 2.3a | 11.6 | 0 | 紫杉醇、长春碱类 | |||||||||
30.2b | 4.7b | |||||||||||||
TKI[ | EGFR抑制剂 | 5~55a | 1~27a | 0~38.9 | 2.6 | 2.6 | 吉非替尼、厄洛替尼 | |||||||
6.3~34.5b | 0.2~0.5b | |||||||||||||
抗血管多激酶 抑制剂 | 6~73a | 0~17a | 0~45 | 0~13 | 0~60.4 | 0~9.3 | 瑞戈非尼、帕唑帕尼、舒尼替尼 | |||||||
4.3~86.4b | 1.0~5.9b | |||||||||||||
HER2抑制剂 | 9~46a | 2~13a | 6.2~30.8 | 0.3~1.1 | 拉帕替尼、图卡替尼 | |||||||||
2.0~7.4b | 0.3~0.7b | |||||||||||||
ALK抑制剂 | 8.3~60.0a | 0~31a | 5.6~15.0 | 2 | 10~29 | 4.5~7.0 | 色瑞替尼、克唑替尼、阿来替尼 | |||||||
17~68b | 2.1~6.9b | |||||||||||||
JAK抑制剂 | 25~53a | 1~3a | 19 | 4.8 | 菲达替尼、芦可替尼 | |||||||||
31.5~59.0b | 0~2b | |||||||||||||
CDK4/6抑制剂 | 30~48a | 2~14a | 阿贝西利、瑞博西利 | |||||||||||
BTK抑制剂 | 4.5~30a | 0.9~1.9a | 11.1 | 0 | 阿卡替尼、泽布替尼 | |||||||||
Bcr-Abl抑制剂 | 4~59a | 1~19a | 6.9~20.6 | 1.9 | 3.4~12.1 | 博舒替尼、达沙替尼、普纳替尼 | ||||||||
5.0~22.3b | 0~6.7b | |||||||||||||
PI3K抑制剂 | 11~50a | 0~14a | 42 | 4 | 22 | 艾德拉尼、阿培利司 | ||||||||
9.2~16.8b | ||||||||||||||
FGFR抑制剂 | 41~51a | 1~6a | 18.6 | 5.1 | 83.1 | 16.9 | 英菲格拉替尼、培美替尼 | |||||||
PARP抑制剂 | 10 | 卢卡帕利 | ||||||||||||
ICI[ | CTLA-4抑制剂 | 1.5~14.6a | 0~5.7a | 11 | 1.5 | 17 | 0.6 | 替西木单抗、伊匹木单抗 | ||||||
0.8~13.2b | 0~4.2b | |||||||||||||
PD-L1抑制剂 | 30~39a | 2.3~3.3a | 1.04~49.00 | 0~0.63 | 1.64~29.00 | 0~0.74 | 度伐利尤单抗、阿替利珠单抗 | |||||||
34~36b | 2.5~2.8b | |||||||||||||
PD-1抑制剂 | 1.4~14.0a | 0~3a | 1.36~16.00 | 0.63~2.00 | 3.89~21.00 | 0.92~2.10 | 帕博利珠单抗、纳武利尤单抗 | |||||||
2.2~16.0b | 0~3b | |||||||||||||
CTLA-4抑制剂+ PD-1抑制剂/ PD-L1抑制剂 | 9.4~56.0a | 2~18a | 16~55 | 0.9~11.0 | 28~41 | 3.4~8.0 | 纳武利尤单抗+伊匹木单抗、 度伐利尤单抗+替西木单抗 | |||||||
10.4~63.0b | 0~27b | |||||||||||||
ADC[ | 8~82a | 0.4~9.0a | 10.3~36.0 | 0~7 | 22~57 | 0~8 | 恩美曲妥珠单抗、莫妥尤单抗、 德曲妥珠单抗、奥加伊妥珠单抗 | |||||||
8~98b | 0.8~9.0b |
"
肝脏生物化学 检查指标 | 意义 |
---|---|
ALT | 肝细胞损伤标志之一,是严重DILI的敏感信号,特异性优于AST。主要分布于肝细胞的细胞质中,肝脏病变较轻时肝细胞膜发生损伤而线粒体膜保持完整,ALT升高程度大于AST。 |
AST | 大部分存在于线粒体内,敏感性和特异性均低于ALT,可作为ALT的补充。通常需与其他指标联合应用,当病变持续或严重时,线粒体膜受到破坏,大量AST从线粒体中释出,导致AST升高。 |
ALP | 对胆汁淤积型肝损伤和重症DILI具有较好的特异性指示作用,由于恶性肿瘤本身、骨骼疾病和妊娠等也会导致ALP升高,需注意鉴别,通常与ALT和AST联合应用。 |
GGT | 在多数情况下与ALP的变化一致,但骨病时可出现ALP升高而GGT正常的情况。急性肝炎时GGT升高,在病变恢复期GGT下降至正常较转氨酶晚,当其他肝功能指标均已恢复正常而GGT尚未恢复正常时,提示肝内残存病变,肝炎尚未痊愈。如反复波动或长时间维持较高水平,则应考虑肝炎有转为慢性趋势。 |
TBil/DBil | 作为肝损伤指标前,需排除红细胞溶血、胆红素结合功能障碍等血液学疾病和其他能够引起胆红素升高的情况。由于机体对胆红素的清除完全依赖肝脏,因而TBil较ALT、AST和ALP更能直接反映肝脏功能,同时也是评估预后和进行分型的重要参考指标。DBil用于判断黄疸类型及程度,其升高表示肝功能有一定损害,在肝细胞性黄疸和阻塞性黄疸时升高明显。 |
"
排除疾病类型 | 实验室检查指标 |
---|---|
甲型、乙型、丙型、戊型病毒性肝炎 | 抗-HAV(IgM);HBsAg,抗-HBc,HBV DNA;抗-HCV,HCV RNA;抗-HEV(IgM和IgG),HEV RNA |
CMV、HSV、EBV感染 | 抗-CMV(IgM和IgG),抗-HSV(IgM和IgG),抗-EBV(IgM和IgG) |
自身免疫性肝炎 | ANA和ASMA滴度、IgG、IgA、IgM |
原发性胆汁性胆管炎 | AMA(尤其AMA-M2)滴度、IgG、IgA、IgM |
酒精性肝病 | 饮酒史、GGT、MCV |
非酒精性脂肪性肝病 | 超声或MRI |
缺氧/缺血性肝病 | 超声或MRI |
胆道疾病 | 超声或MRI、内镜逆行胰胆管造影术(视情况而定) |
Wilson病 | 铜蓝蛋白 |
血色素沉着症 | 铁蛋白、转铁蛋白饱和度 |
α1-抗胰蛋白酶缺乏症 | α1-抗胰蛋白酶 |
"
分级 | 实验室检查 | 临床表现 |
---|---|---|
0级(无肝损伤) | 对暴露药物耐受,无肝毒性反应 | 无症状 |
1级(轻度肝损伤) | ALT和(或)ALP↑,TBil<2.5×ULN,INR<1.5 | 无症状或乏力、腹痛、黄疸等轻微症状 |
2级(中度肝损伤) | ALT和(或)ALP↑,TBil≥2.5×ULN或INR≥1.5 | 症状加重 |
3级(重度肝损伤) | ALT和(或)ALP↑,TBil≥5×ULN或INR≥1.5 | 症状进一步加重,需要住院治疗 |
4级(急性肝衰竭) | ALT和(或)ALP↑,TBil≥10×ULN或TBil每日升高≥1.0 mg/dl (17.1 μmol/L),INR≥2.0或PTA<40% | 可出现腹腔积液或与DILI相关的器官功能衰竭 |
5级(致命) | 因DILI死亡,或需接受肝移植才能存活 |
"
分级 | CTCAE 4.0版[ | CTCAE 5.0版[ |
---|---|---|
G1(轻度) | AST或ALT>(1~3)×ULN;ALP>(1~2.5)×ULN; TBil>(1~1.5)×ULN | AST或ALT>(1~3)×ULN(基线值正常)/(1.5~3)×基线值(基线值异常); ALP>(1~2.5)×ULN(基线值正常)/(2~2.5)×基线值(基线值异常); TBil>(1~1.5)×ULN(基线值正常)/>(1~1.5)×基线值(基线值异常) |
G2(中度) | AST或ALT (3~5)×ULN;ALP>(2.5~5)×ULN; TBil>(1.5~3)×ULN | AST或ALT>(3~5)×ULN(基线值正常)/>(3~5)×基线值(基线值异常); ALP>(2.5~5)×ULN(基线值正常)/>(2.5~5)×基线值(基线值异常); TBil>(1.5~3)×ULN(基线值正常)/>(1.5~3)×基线值(基线值异常) |
G3(重度) | AST或ALT(5~20)×ULN;ALP>(5~20)×ULN; TBil>(3~10)×ULN | AST或ALT>(5~20)×ULN(基线值正常)/>(5~20)×基线值(基线值异常); ALP>(5~20)×ULN(基线值正常)/(5~20)×基线值(基线值异常); TBil>(3~10)×ULN(基线值正常)/>(3~10)×基线值(基线值异常) |
G4(致命) | AST或ALT>20×ULN;ALP>20×ULN; TBil>10×ULN | AST或ALT>20×ULN(基线值正常)/>20×基线值(基线值异常); ALP>20×ULN(基线值正常)/>10×基线值(基线值异常); TBil>10×ULN(基线值正常)/>10×基线值(基线值异常) |
"
药物: ___________ 初始ALT:___________ 初始ALP:___________ R值=[ALT/ULN]÷[ALP/ULN]= | ||||||||
肝损伤类型:肝细胞型(R≥5.0),胆汁淤积型(R≤2.0),混合型(2.0<R<5.0) | ||||||||
肝细胞损伤型 胆汁淤积型或混合型 评价 | ||||||||
1.用药至发病的时间 | ||||||||
初次用药 | 再次用药 | 初次用药 | 再次用药 | 计分 | ||||
○从用药开始 | ||||||||
●提示 | 5~90 d | 1~15 d | 5~90 d | 1~90 d | +2 | |||
●可疑 | <5 d或>90 d | >15 d | <5 d或>90 d | >90 d | +1 | |||
○从停药开始 | ||||||||
●可疑 | ≤15 d | ≤15 d | ≤30 d | ≤30 d | +1 | |||
注:若肝损伤反应出现在开始服药前,或停药后>15 d(肝细胞损伤型)或>30 d(胆汁淤积型),则应考虑肝损伤与药物无关,不应继续进行RUCAM评分。 | ||||||||
2.病程 | ALT在峰值和ULN之间的变化 | ALP(或TBil)在峰值与ULN之间的变化 | ||||||
○停药后 | ||||||||
●高度提示 | 8 d内下降≥50% | 不适用 | +3 | |||||
●提示 | 30 d内下降≥50% | 180 d内下降≥50% | +2 | |||||
●可疑 | 不适用 | 180 d内下降<50% | +1 | |||||
●无结论 | 无资料或30 d后下降≥ 50% | 不变、上升或无资料 | 0 | |||||
●与药物作用相反 | 30 d后下降<50%或再次升高 | 不适用 | -2 | |||||
○若继续用药 | ||||||||
●无结论 | 所有情况 | 所有情况 | 0 | |||||
3.危险因素 | 酒精(乙醇) | 酒精或妊娠(任意1种) | ||||||
○饮酒或妊娠 | 有 | 有 | +1 | |||||
无 | 无 | 0 | ||||||
○年龄 | ≥55岁 | ≥55岁 | +1 | |||||
<55岁 | < 55 岁 | 0 | ||||||
4.伴随用药 | ||||||||
○无伴随用药,或无资料,或伴随用药至发病时间不相符 | 0 | |||||||
○伴随用药至发病时间相符 | -1 | |||||||
○伴随用药已知有肝毒性,且至发病时间提示或相符 | -2 | |||||||
○伴随用药的肝损伤证据明确(再刺激反应呈阳性,或与肝损伤明确相关并有典型的警示标志) | -3 | |||||||
5.除外其他肝损伤原因 | ||||||||
第Ⅰ组(6种病因) | ||||||||
○急性甲型肝炎[抗-HAV(-)IgM(+)]或 | ● | 排除组Ⅰ和组Ⅱ中的所有病因 | +2 | |||||
HBV感染[HBsAg和(或)抗-HBc(-)IgM(+)]或 | ● | 排除组Ⅰ中的所有病因 | +1 | |||||
HCV感染[抗-HCV(+)和(或)HCV RNA(+),伴有相应的临床病史] | ● | 排除组Ⅰ中的5或4种病因 | 0 | |||||
○胆道梗阻(影像检查证实) | ● | 排除组Ⅰ中的少于4种病因 | -2 | |||||
○酒精(乙醇)中毒(有过量饮酒史且AST/ALT≥2) | ||||||||
○近期有低血压、休克或肝脏缺血史(发作2周以内) | ||||||||
第Ⅱ组(2类病因) | ||||||||
○合并自身免疫性肝炎、脓毒症、慢性乙型或丙型肝炎、原发性胆汁性胆管炎(PBC)或原发性硬化性胆管炎(PSC)等基础疾病 | ● | 非药物性因素高度可能 | -3 | |||||
○临床特征及血清学和病毒学检测提示急性CMV、EBV或HSV感染 | ||||||||
6.药物既往肝损伤信息 | ||||||||
○肝损伤反应已在说明书中标明 | +2 | |||||||
○肝损伤反应未在说明书中标明,但曾有报道 | +1 | |||||||
○肝损伤反应未知 | 0 | |||||||
7.再用药反应 | ||||||||
○阳性 | 再次单用该药后ALT升高2倍 | 再次单用该药后ALP(或TBil)升高2倍 | +3 | |||||
○可疑 | 再次和首次发生肝损伤时使用的另一 药物联合应用,ALT升高2倍 | 再次和首次发生肝损伤时使用的另一药物联合应用,ALP(或TBil)升高2倍 | +1 | |||||
○阴性 | 再次单用该药后ALT升高,但低于ULN | 再次单用该药后ALP(或TBil)升高,但低于ULN | -2 | |||||
○未再用药或无法判断 | 其他情况 | 其他情况 | 0 |
"
分级 | 管理措施 |
---|---|
G1 | 继续ICI治疗 |
每周监测1次肝功能 | |
如肝功能稳定,适当减少监测频率 | |
G2 | 暂停ICI治疗 |
0.5~1 mg/kg泼尼松口服,如肝功能好转,缓慢减量,总疗程至少4周 | |
泼尼松剂量减至≤10 mg/d,且肝损伤≤1级,可重新ICI治疗 | |
每3天检测1次肝功能 | |
可选择进行肝脏活检 | |
G3 | 建议停用ICI,泼尼松剂量减至<10 mg/d,且肝损伤≤1级,可考虑重新ICI治疗 |
G4 | 建议停用ICI治疗 |
静脉使用甲泼尼龙,1~2 mg/kg,待肝损伤降至2级后,可等效改换口服的泼尼松并继续缓慢减量,总疗程至少4周 | |
3 d后如肝功能无好转,考虑加用麦考酚酯(500~1 000 mg,2次/d) | |
如麦考酚酯效果仍不佳,应考虑联合免疫抑制治疗,如托珠单抗、他克莫司,硫唑嘌呤、环孢素或抗人胸腺淋巴细胞球蛋白等 | |
不推荐使用英夫利西单抗 | |
请肝病专家会诊 | |
进行肝脏CT、磁共振胰胆管成像或超声检查 | |
考虑肝脏活检 | |
每1~2天检测1次肝功能 | |
考虑住院治疗 |
[1] | 中国医药生物技术协会药物性肝损伤防治技术专业委员会, 中华医学会肝病学分会药物性肝病学组. 中国药物性肝损伤诊治指南(2023年版)[J]. 中华肝脏病杂志, 2023, 31(4): 355-384. DOI: 10.3760/cma.j.cn501113-20230419-00176-1. |
[2] | Wang J, Song H, Ge F, et al. Landscape of DILI-related adverse drug reaction in China mainland[J]. Acta Pharm Sin B, 2022, 12(12): 4424-4431. DOI: 10.1016/j.apsb.2022.04.019. |
[3] | Zhou Y, Yang L, Liao Z, et al. Epidemiology of drug-induced liver injury in China: a systematic analysis of the Chinese literature including 21,789 patients[J]. Eur J Gastroenterol Hepatol, 2013, 25(7): 825-829. DOI: 10.1097/MEG.0b013e32835f6889. |
[4] | 于世英, 姚阳. 肿瘤药物相关性肝损伤防治专家共识(2014版)[M]. 北京: 中国协会医科大学出版社, 2014. |
[5] | 王燕婷, 戴媛媛, 杨珺, 等. 细胞毒化疗药物不良反应支持治疗的指南进展及实践总结[J]. 中国药学杂志, 2020, 55(20): 1726-1735. DOI: 10.11669/cpj.2020.20.012. |
[6] | Mudd TW, Guddati AK. Management of hepatotoxicity of chemotherapy and targeted agents[J]. Am J Cancer Res, 2021, 11(7): 3461-3474. |
[7] | Qian J, Zhang X, Zhang B, et al. Hepatotoxicity in advanced lung adenocarcinoma: a retrospective study of 2108 cases[J]. J Cancer, 2018, 9(9): 1607-1613. DOI: 10.7150/jca.24217. |
[8] | 方凯, 许健, 徐可, 等. 化疗药物致肝损伤的作用机制[J]. 临床肝胆病杂志, 2020, 36(3): 677-679. DOI: 10.3969/j.issn.1001-5256.2020.03.045. |
[9] | Anon. LiverTox: clinical and research information on drug-induced liver injury [Internet][EB/OL]. [2025-04-09]. https://www.ncbi.nlm.nih.gov/books/NBK548844/. |
[10] | Viganò M, La Milia M, Grassini MV, et al. Hepatotoxicity of small molecule protein kinase inhibitors for cancer[J]. Cancers (Basel), 2023, 15(6): 1766. DOI: 10.3390/cancers15061766. |
[11] | Maliepaard M, Faber YS, van Bussel MTJ. Reported hepatotoxicity and hepatotoxicity guidance in the product information of protein kinase inhibitors in oncology registered at the European medicines agency[J]. Pharmacol Res Perspect, 2023, 11(2): e01067. DOI: 10.1002/prp2.1067. |
[12] | Zhao Q, Wu ZE, Li B, et al. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors[J]. Pharmacol Ther, 2022, 237: 108256. DOI: 10.1016/j.pharmthera.2022.108256. |
[13] | 高媛, 冉怡雯, 吴晶晶, 等. 抗体药物偶联物相关药物性肝损伤研究进展[J]. 药学进展, 2023, 47(2): 92-100. DOI: 10.20053/j.issn1001-5094.2023.02.003. |
[14] | Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia[J]. N Engl J Med, 2016, 375(8): 740-753. DOI: 10.1056/NEJMoa1509277. |
[15] | Pfizer Inc. MylotargTM (gemtuzumab ozogamicin) for injection, for intravenous use[EB/OL]. [2020-06-16][2025-02-28]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761060lbl.pdf. |
[16] | Anon. Genentech. Kadcyla® (ado-trastuzumab emtansine) for injection, for intravenous use[EB/OL]. [2022-02-02][2025-02-28]. https://www.rxlist.com/kadcyla-drug.htm. |
[17] | Anon. Wyeth Pharms Inc. Besponsa (inotuzumab ozogamicin) for injection, for intravenous use[EB/OL]. [2017-08-17] [2025-02-28]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761040s000lbl.pdf. |
[18] | Schneider BJ, Naidoo J, Santomasso BD, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update[J]. J Clin Oncol, 2021, 39(36): 4073-4126. DOI: 10.1200/JCO.21.01440. |
[19] | Remash D, Prince DS, McKenzie C, et al. Immune checkpoint inhibitor-related hepatotoxicity: a review[J]. World J Gastroenterol, 2021, 27(32): 5376-5391. DOI: 10.3748/wjg.v27.i32.5376. |
[20] | Xu Z, Qi G, Liu X, et al. Hepatotoxicity in immune checkpoint inhibitors: a pharmacovigilance study from 2014-2021[J]. PLoS One, 2023, 18(3): e0281983. DOI: 10.1371/journal.pone.0281983. |
[21] | Spigel DR, Reynolds C, Waterhouse D, et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation-positive advanced non-small cell lung cancer (CheckMate 370)[J]. J Thorac Oncol, 2018, 13(5): 682-688. DOI: 10.1016/j.jtho.2018.02.022. |
[22] | Li X, Tang J, Mao Y. Incidence and risk factors of drug-induced liver injury[J]. Liver Int, 2022, 42(9): 1999-2014. DOI: 10.1111/liv.15262. |
[23] | Peeraphatdit TB, Wang J, Odenwald MA, et al. Hepatotoxicity from immune checkpoint inhibitors: a systematic review and management recommendation[J]. Hepatology, 2020, 72(1): 315-329. DOI: 10.1002/hep.31227. |
[24] | Sangro B, Chan SL, Meyer T, et al. Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma[J]. J Hepatol, 2020, 72(2): 320-341. DOI: 10.1016/j.jhep.2019.10.021. |
[25] | Liu Z, Zhu Y, Xie H, et al. Immune-mediated hepatitis induced by immune checkpoint inhibitors: current updates and future perspectives[J]. Front Pharmacol, 2022, 13: 1077468. DOI: 10. 3389/fphar.2022.1077468. |
[26] | Xu Y, Yan C, Zhao Y, et al. Hepatic failure associated with immune checkpoint inhibitors: an analysis of the Food and Drug Administration Adverse Event Reporting System database[J]. Cancer Med, 2023, 12(8): 9167-9174. DOI: 10.1002/cam4.5655. |
[27] | Shojaie L, Ali M, Iorga A, et al. Mechanisms of immune checkpoint inhibitor-mediated liver injury[J]. Acta Pharm Sin B, 2021, 11(12): 3727-3739. DOI: 10.1016/j.apsb.2021.10.003. |
[28] | Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management[J]. Blood Rev, 2019, 34: 45-55. DOI: 10.1016/j.blre.2018.11.002. |
[29] | Lamers CH, Sleijfer S, van Steenbergen S, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity[J]. Mol Ther, 2013, 21(4): 904-912. DOI: 10.1038/mt.2013.17. |
[30] | Anon. Package insert and patient information-proveng[EB/OL]. [2018-09-28]. https://www.fda.gov/media/78511/download. |
[31] | Yerram P, Reiss SN, Modelevsky L, et al. Evaluation of toxicity of carmustine with or without bevacizumab in patients with recurrent or progressive high grade gliomas[J]. J Neurooncol, 2019, 145(1): 57-63. DOI: 10.1007/s11060-019-03266-0. |
[32] | Yin X, Zhao Z, Yin Y, et al. Adverse event profiles of epidermal growth factor receptor-tyrosine kinase inhibitors in cancer patients: a systematic review and meta-analysis[J]. Clin Transl Sci, 2021, 14(3): 919-933. DOI: 10.1111/cts.12957. |
[33] | Ghatalia P, Je Y, Mouallem NE, et al. Hepatotoxicity with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a meta-analysis of randomized clinical trials[J]. Crit Rev Oncol Hematol, 2015, 93(3): 257-276. DOI: 10.1016/j.critrevonc.2014.11.006. |
[34] | 王碧芸, 葛睿, 江泽飞, 等. 乳腺癌靶向人表皮生长因子受体2酪氨酸激酶抑制剂不良反应管理共识[J]. 中华肿瘤杂志, 2020, 42(10): 798-806. DOI: 10.3760/cma.j.cn112152-20200805-00711. |
[35] | 王可, 李娟, 孙建国, 等. 间变性淋巴瘤激酶抑制剂不良反应管理西南专家建议(2021年版)[J]. 中国肺癌杂志, 2021, 24(12): 815-828. DOI: 10.3779/j.issn.1009-3419.2021.102.32. |
[36] | Stover DG, Gil Del Alcazar CR, Brock J, et al. Phase Ⅱ study of ruxolitinib, a selective JAK1/2 inhibitor, in patients with metastatic triple-negative breast cancer[J]. NPJ Breast Cancer, 2018, 4: 10. DOI: 10.1038/s41523-018-0060-z. |
[37] | 汪文华, 马姗姗, 张旭东, 等. BTK抑制剂在中枢神经系统淋巴瘤中的治疗作用及安全性分析[J]. 中国肿瘤临床, 2023, 50(5): 237-243. DOI: 10.12354/j.issn.1000-8179.2023.20220670. |
[38] | 窦雪琳, 王莎莎, 房继莲, 等. 慢性髓系白血病患者酪氨酸激酶抑制剂相关的肝脏不良反应[J]. 中华内科杂志, 2018, 57(9): 649-655. DOI: 10.3760/cma.j.issn.0578-1426.2018.09.006. |
[39] | Ricart AD. Drug-induced liver injury in oncology[J]. Ann Oncol, 2017, 28(8): 2013-2020. DOI: 10.1093/annonc/mdx158. |
[40] | Phillips TJ, Michot JM, Ribrag V. Can next-generation PI3K inhibitors unlock the full potential of the class in patients with B-cell lymphoma?[J]. Clin Lymphoma Myeloma Leuk, 2021, 21(1): 8-20.e3. DOI: 10.1016/j.clml.2020.08.022. |
[41] | Gile JJ, Ou FS, Mahipal A, et al. FGFR inhibitor toxicity and efficacy in cholangiocarcinoma: multicenter single-institution cohort experience[J]. JCO Precis Oncol, 2021, 5: PO. 21.00064. DOI: 10.1200/PO.21.00064. |
[42] | Anon. TECENTRIQ® (atezolizumab) injection, highlights of prescri-bing information for intravenous use. Initial U.S. approval:2016[EB/OL]. [2025-03-02]. https://www.gene.com/download/pdf/tecentriq_ prescribing.pdf. |
[43] | Anon. IMFINZI® (durvalumab) injection, highlights of prescribing information for intravenous use. Initial U.S. approval:2017[EB/OL]. [2025-03-02]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761069s048lbl.pdf. |
[44] | Anon. IMJUDO® (tremelimumab-actl) injection, highlights of prescri-bing information for intravenous use. Initial. U.S. approval: 2022[EB/OL]. [2025-03-02]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761069s048lbl.pdf. |
[45] | Fu J, Li WZ, McGrath NA, et al. Immune checkpoint inhibitor associated hepatotoxicity in primary liver cancer versus other cancers: a systematic review and meta-analysis[J]. Front Oncol, 2021, 11: 650292. DOI: 10.3389/fonc.2021.650292. |
[46] | Anon. KEYTRUDA® (pembrolizumab) injection, highlights of prescri-bing information for intravenous use. Initial U.S. approval:2014[EB/OL]. [2025-03-02]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125514lbl.pdf. |
[47] | Anon. YERVOY® (ipilimumab) injection, highlights of prescribing information for intravenous use. Initial U.S. approval:2011[EB/OL]. [2025-03-02]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125377s096lbl.pdf. |
[48] | Daiichi Sankyo. Enhertu® (fam-trastuzumab deruxtecan-nxki) for injection, forintravenous use[EB/OL]. [2022-11-04][2023-01-15]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761139 s024lbl.pdf. |
[49] | Vincenzi B, Armento G, Spalato Ceruso M, et al. Drug-induced hepatotoxicity in cancer patients-implication for treatment[J]. Expert Opin Drug Saf, 2016, 15(9): 1219-1238. DOI: 10.1080/14740338.2016.1194824. |
[50] | Hoofnagle JH, Björnsson ES. Drug-induced liver injury-types and phenotypes[J]. N Engl J Med, 2019, 381(3): 264-273. DOI: 10.1056/NEJMra1816149. |
[51] | Mei T, Wang T, Deng Q, et al. The safety of combining immune checkpoint inhibitors and platinum-based chemotherapy for the treatment of solid tumors: a systematic review and network meta-analysis[J]. Front Immunol, 2023, 14: 1062679. DOI: 10.3389/fimmu.2023.1062679. |
[52] | European Association for the Study of the Liver. EASL clinical practice guidelines: vascular diseases of the liver[J]. J Hepatol, 2016, 64(1): 179-202. DOI: 10.1016/j.jhep.2015.07.040. |
[53] | Chalasani NP, Maddur H, Russo MW, et al. ACG clinical guideline: diagnosis and management of idiosyncratic drug-induced liver injury[J]. Am J Gastroenterol, 2021, 116(5): 878-898. DOI: 10.14309/ajg.0000000000001259. |
[54] | Medina-Caliz I, Robles-Diaz M, Garcia-Muñoz B, et al. Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury[J]. J Hepatol, 2016, 65(3): 532-542. DOI: 10.1016/j.jhep.2016.05.003. |
[55] | CIOMS. Drug-induced liver injury (DILI): current status and future directions for drug development and the post-market setting[M]. Geneva, Switzerland: Council for International Organizations of Medical Sciences (CIOMS), 2020. |
[56] | Ribas A, Hodi FS, Callahan M, et al. Hepatotoxicity with combination of vemurafenib and ipilimumab[J]. N Engl J Med, 2013, 368(14): 1365-1366. DOI: 10.1056/NEJMc1302338. |
[57] | Yoshikawa Y, Imamura M, Yamauchi M, et al. Prevalence of immune-related adverse events and anti-tumor efficacy following immune checkpoint inhibitor therapy in Japanese patients with various solid tumors[J]. BMC Cancer, 2022, 22(1): 1232. DOI: 10.1186/s12885-022-10327-7. |
[58] | Pan J, Liu Y, Guo X, et al. Risk factors for immune-mediated hepatotoxicity in patients with cancer treated with immune checkpoint inhibitors: a systematic review and meta-analysis[J]. Expert Opin Drug Saf, 2022, 21(10): 1275-1287. DOI: 10.1080/14740338.2022.2134854. |
[59] | 雷晓红, 唐颖悦, 李静, 等. 肿瘤免疫检查点抑制剂相关的肝毒性[J]. 中华肝脏病杂志, 2020, 28(2): 175-178. DOI: 10.3760/cma.j.issn.1007-3418.2020.02.016. |
[60] | Endo Y, Mohan N, Dokmanovic M, et al. Mechanisms contributing to ado-trastuzumab emtansine-induced toxicities: a gateway to better understanding of ADC-associated toxicities[J]. Antib Ther, 2021, 4(1): 55-59. DOI: 10.1093/abt/tbab005. |
[61] | Andrade RJ, Robles-Díaz M. Diagnostic and prognostic assessment of suspected drug-induced liver injury in clinical practice[J]. Liver Int, 2020, 40(1): 6-17. DOI: 10.1111/liv.14271. |
[62] | Schomaker S, Potter D, Warner R, et al. Serum glutamate dehydrogenase activity enables early detection of liver injury in subjects with underlying muscle impairments[J]. PLoS One, 2020, 15(5): e0229753. DOI: 10.1371/journal.pone.0229753. |
[63] | Weber S, Gerbes AL. Challenges and future of drug-induced liver injury research-laboratory tests[J]. Int J Mol Sci, 2022, 23(11): 6049. DOI: 10.3390/ijms23116049. |
[64] | Fontana RJ, Liou I, Reuben A, et al. AASLD practice guidance on drug, herbal, and dietary supplement-induced liver injury[J]. Hepatology, 2023, 77(3): 1036-1065. DOI: 10.1002/hep.32689. |
[65] | Da Cunha T, Wu GY, Vaziri H. Immunotherapy-induced hepatoto-xicity: a review[J]. J Clin Transl Hepatol, 2022, 10(6): 1194-1204. DOI: 10.14218/JCTH.2022.00105. |
[66] | Hosack T, Damry D, Biswas S. Drug-induced liver injury: a comprehensive review[J]. Therap Adv Gastroenterol, 2023, 16: 17562848231163410. DOI: 10.1177/17562848231163410. |
[67] | National Cancer Institute.Common Terminology Criteria for Adverse Events (CTCAE), Version 4.03[S]. Washington D.C., USA: U.S. Department of Health and Human Services. 2009. |
[68] | National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE), Version 5.0[S]. Washington D.C., USA: U.S. Department of Health and Human Services. 2017. |
[69] | Hayashi PH, MI LCA, Fontana RJ, et al. A revised electronic version of RUCAM for the diagnosis of DILI[J]. Hepatology, 2022, 76(1): 18-31. DOI: 10.1002/hep.32327. |
[70] | Hunt CM, Papay JI, Stanulovic V, et al. Drug rechallenge following drug-induced liver injury[J]. Hepatology, 2017, 66(2): 646-654. DOI: 10.1002/hep.29152. |
[71] | Hu H, Wang K, Jia R, et al. Current status in rechallenge of immunotherapy[J]. Int J Biol Sci, 2023, 19(8): 2428-2442. DOI: 10.7150/ijbs.82776. |
[72] | Li M, Luo Q, Tao Y, et al. Pharmacotherapies for drug-induced liver injury: a current literature review[J]. Front Pharmacol, 2021, 12: 806249. DOI: 10.3389/fphar.2021.806249. |
[73] | 中华医学会感染病学分会, 肝脏炎症及其防治专家共识专家委员会. 肝脏炎症及其防治专家共识[J]. 中华肝脏病杂志, 2014, 22(2): 94-103. DOI: 10.3760/cma.j.issn.1007-3418.2014.02.006. |
[74] | Wang Y, Wang Z, Gao M, et al. Efficacy and safety of magnesium isoglycyrrhizinate injection in patients with acute drug-induced liver injury: a phase Ⅱ trial[J]. Liver Int, 2019, 39(11): 2102-2111. DOI: 10.1111/liv.14204. |
[75] | Lei X, Zhang J, Xu Q, et al. Exploring the efficacy and safety of polyene phosphatidylcholine for treatment of drug-induced liver injury using the Roussel Uclaf causality assessment method: a propensity score matching comparison[J]. J Int Med Res, 2021, 49(8): 3000605211039810. DOI: 10.1177/03000605211039810. |
[76] | Chen Y, Dong H, Thompson DC, et al. Glutathione defense mechanism in liver injury: insights from animal models[J]. Food and Chemical Toxicology, 2013, 60: 38-44. DOI: 10.1016/j.fct.2013.07.008. |
[77] | Lee WM, Hynan LS, Rossaro L, et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure[J]. Gastroenterology, 2009, 137(3): 856-864.e1. DOI: 10.1053/j.gastro.2009.06.006. |
[78] | Squires RH, Dhawan A, Alonso E, et al. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial[J]. Hepatology, 2013, 57(4): 1542-1549. DOI: 10.1002/hep.26001. |
[79] | 中华医学会, 中华医学会杂志社, 中华医学会消化病学分会, 等. 药物性肝损伤基层诊疗指南(2019年)[J]. 中华全科医师杂志, 2020, 19(10): 868-875. DOI: 10.3760/cma.j.cn114798-20200812-00900. |
[80] | 中国临床肿瘤学会指南工作委员会. 免疫检查点抑制剂临床应用指南2023[M] 北京: 人民卫生出版社, 2023. |
[81] | NCCN Clinical Practice Guidelines in Oncology. Management of immunotherapy-related toxicities. Version 2.2023[Z]. 2023. |
[82] | Cheung V, Gupta T, Payne M, et al. Immunotherapy-related hepatitis: real-world experience from a tertiary centre[J]. Frontline Gastroenterol, 2019, 10(4): 364-371. DOI: 10.1136/flgastro-2018-101146. |
[83] | Pollack MH, Betof A, Dearden H, et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma[J]. Ann Oncol, 2018, 29(1): 250-255. DOI: 10.1093/annonc/mdx642. |
[84] | 中华医学会肿瘤学分会乳腺肿瘤学组, 中国乳腺癌靶向治疗药物安全性管理共识专家组. 中国乳腺癌靶向治疗药物安全性管理专家共识[J]. 中国癌症杂志, 2019, 29(12): 993-1006. DOI: 10.19401/j.cnki.1007-3639.2019.12.013. |
[85] | 中国药学会医院药学专业委员会, 中国抗癌协会肿瘤临床化疗专业委员会. 抗体偶联药物安全性跨学科管理中国专家共识[J]. 中国医院药学杂志, 2023, 43(1): 1-10, 60. DOI: 10.13286/j.1001-5213.2023.01.01. |
[86] | Hayashi PH, Rockey DC, Fontana RJ, et al. Death and liver transplantation within 2 years of onset of drug-induced liver injury[J]. Hepatology, 2017, 66(4): 1275-1285. DOI: 10.1002/hep.29283. |
[87] | McPhail MJ, Farne H, Senvar N, et al. Ability of king's college criteria and model for end-stage liver disease scores to predict mortality of patients with acute liver failure: a meta-analysis[J]. Clin Gastroenterol Hepatol, 2016, 14(4): 516-525.e5. DOI: 10.1016/j.cgh.2015.10.007. |
[88] | 幸鹭, 王宇, 陶艳艳, 等. 药物性肝损伤的临床评估与预后预测[J]. 临床肝胆病杂志, 2019, 35(12): 2820-2823. DOI: 10.3969/j.issn.1001-5256.2019.12.039. |
[89] | 中国临床肿瘤学会抗淋巴瘤联盟, 中国临床肿瘤学会抗白血病联盟, 中华医学会血液学分会, 等. 恶性血液病患者药物性肝损伤的预防和规范化治疗中国专家共识(2021年版)[J]. 中华血液学杂志, 2021, 42(3): 185-192. DOI: 10.3760/cma.j.issn.0253-2727.2021.03.002. |
[90] | 秦叔逵, 杨柳青, 王科明, 等. 异甘草酸镁注射液预防抗肿瘤化疗相关性急性肝损伤的随机对照、全国多中心临床研究[J]. 临床肿瘤学杂志, 2017, 22(2): 97-106. |
[91] | 李国辉, 陈任安, 王文清, 等. 异甘草酸镁注射液预防血液肿瘤化疗相关肝损伤多中心临床协作研究[J]. 陕西医学杂志, 2019, 48(6): 787-790. DOI: 10.3969/j.issn.1000-7377.2019.06.029. |
[92] | 终末期肝病模型(12岁及12岁以上)[EB/OL]. [2025-03-02]. https://cals.medlive.cn/calc/show/2?id=calc-49. |
[93] | Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease[J]. Hepatology, 2001, 33(2): 464-470. DOI: 10.1053/jhep.2001.22172. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||