[1] |
Ebell MH, Thai TN, Royalty KJ. Cancer screening recommendations: an international comparison of high income countries[J]. Public Health Rev, 2018, 39: 7. DOI: 10.1186/s40985-018-0080-0.
pmid: 29507820
|
[2] |
di Luccio E, Morishita M, Hirotsu T. C. elegans as a powerful tool for cancer screening[J]. Biomedicines, 2022, 10(10): 2371. DOI: 10.3390/biomedicines10102371.
|
[3] |
World Health Organization. Cancer[EB/OL]. [2022-09-08]. https://www.who.int/news-room/fact-sheets/detail/cancer.
|
[4] |
Inaba S, Shimozono N, Yabuki H, et al. Accuracy evaluation of the C. elegans cancer test (N-NOSE) using a new combined method[J]. Cancer Treat Res Commun, 2021, 27: 100370. DOI: 10.1016/j.ctarc.2021.100370.
|
[5] |
Markou A, Tzanikou E, Lianidou E. The potential of liquid biopsy in the management of cancer patients[J]. Semin Cancer Biol, 2022, 84: 69-79. DOI: 10.1016/j.semcancer.2022.03.013.
pmid: 35331850
|
[6] |
Bax C, Lotesoriere BJ, Sironi S, et al. Review and comparison of cancer biomarker trends in urine as a basis for new diagnostic pathways[J]. Cancers (Basel), 2019, 11(9): 1244. DOI: 10.3390/cancers11091244.
|
[7] |
Daily A, Ravishankar P, Harms S, et al. Using tears as a non-invasive source for early detection of breast cancer[J]. PLoS One, 2022, 17(4): e0267676. DOI: 10.1371/journal.pone.0267676.
|
[8] |
Hanna GB, Boshier PR, Markar SR, et al. Accuracy and methodologic challenges of volatile organic compound-based exhaled breath tests for cancer diagnosis: a systematic review and meta-analysis[J]. JAMA Oncol, 2019, 5(1): e182815. DOI: 10.1001/jamaoncol.2018.2815.
|
[9] |
Scheepers MHMC, Al-Difaie Z, Brandts L, et al. Diagnostic performance of electronic noses in cancer diagnoses using exhaled breath: a systematic review and meta-analysis[J]. JAMA Netw Open, 2022, 5(6): e2219372. DOI: 10.1001/jamanetworkopen.2022.19372.
|
[10] |
Becker R. Non-invasive cancer detection using volatile biomarkers: is urine superior to breath?[J]. Med Hypotheses, 2020, 143: 110060. DOI: 10.1016/j.mehy.2020.110060.
|
[11] |
Feil C, Staib F, Berger MR, et al. Sniffer dogs can identify lung cancer patients from breath and urine samples[J]. BMC Cancer, 2021, 21(1): 917. DOI: 10.1186/s12885-021-08651-5.
pmid: 34388977
|
[12] |
Giró Benet J, Seo M, Khine M, et al. Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine[J]. Sci Rep, 2022, 12(1): 14873. DOI: 10.1038/s41598-022-17795-8.
pmid: 36050339
|
[13] |
Issitt T, Wiggins L, Veysey M, et al. Volatile compounds in human breath: critical review and meta-analysis[J]. J Breath Res, 2022, 16(2): 024001. DOI: 10.1088/1752-7163/ac5230.
|
[14] |
Hu W, Wu W, Jian Y, et al. Volatolomics in healthcare and its advanced detection technology[J]. Nano Res, 2022, 15(9): 8185-8213. DOI: 10.1007/s12274-022-4459-3.
pmid: 35789633
|
[15] |
Anzivino R, Sciancalepore PI, Dragonieri S, et al. The role of a polymer-based E-nose in the detection of head and neck cancer from exhaled breath[J]. Sensors (Basel), 2022, 22(17): 6485. DOI: 10.3390/s22176485.
|
[16] |
Kort S, Brusse-Keizer M, Schouwink H, et al. Diagnosing non-small cell lung cancer by exhaled breath profiling using an electronic nose: a multicenter validation study[J]. Chest, 2023, 163(3): 697-706. DOI: 10.1016/j.chest.2022.09.042.
|
[17] |
Chung J, Akter S, Han S, et al. Diagnosis by volatile organic compounds in exhaled breath in exhaled breath from patients with gastric and colorectal cancers[J]. Int J Mol Sci, 2022, 24(1): 129. DOI: 10.3390/ijms24010129.
|
[18] |
van der Sar IG, Wijbenga N, Nakshbandi G, et al. The smell of lung disease: a review of the current status of electronic nose technology[J]. Respir Res, 2021, 22(1): 246. DOI: 10.1186/s12931-021-01835-4.
|
[19] |
Suzuki M, Hattori Y, Saito T, et al. Pond assay for the sensory systems of Caenorhabditis elegans: a novel anesthesia-free method enabling detection of responses to extremely low chemical concentrations[J]. Biology (Basel), 2022, 11(2): 335. DOI: 10.3390/biology11020335.
|
[20] |
Asai A, Konno M, Ozaki M, et al. Scent test using Caenorhabditis elegans to screen for early-stage pancreatic cancer[J]. Oncotarget, 2021, 12(17): 1687-1696. DOI: 10.18632/oncotarget.28035.
|
[21] |
Kobayashi M, Fujita A, Ogawa T, et al. Caenorhabditis elegans as a diagnostic aid for pancreatic cancer[J]. Pancreas, 2021, 50(5): 673-678. DOI: 10.1097/MPA.0000000000001814.
|
[22] |
Kusumoto H, Tashiro K, Shimaoka S, et al. Behavioural response alteration in Caenorhabditis elegans to urine after surgical removal of cancer: Nematode-NOSE (N-NOSE) for postoperative evaluation[J]. Biomark Cancer, 2019, 11: 1179299X19896551. DOI: 10.1177/1179299X19896551.
|
[23] |
Ueda Y, Kawamoto K, Konno M, et al. Application of C. elegans cancer screening test for the detection of pancreatic tumor in genetically engineered mice[J]. Oncotarget, 2019, 10(52): 5412-5418. DOI: 10.18632/oncotarget.27124.
|
[24] |
Gasparri R, Capuano R, Guaglio A, et al. Volatolomic urinary profile analysis for diagnosis of the early stage of lung cancer[J]. J Breath Res, 2022, 16(4): 046008. DOI: 10.1088/1752-7163/ac88ec.
|
[25] |
Lanza E, Di Rocco M, Schwartz S, et al. C. elegans-based chemosensation strategy for the early detection of cancer metabolites in urine samples[J]. Sci Rep, 2021, 11(1): 17133. DOI: 10.1038/s41598-021-96613-z.
pmid: 34429473
|