[1] |
Qian S, Chang D, He S, et al. Aptamers from random sequence space: accomplishments, gaps and future considerations[J]. Anal Chim Acta, 2022, 1196: 339511. DOI: 10.1016/j.aca.2022.339511.
|
[2] |
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818-822. DOI: 10.1038/346818a0.
|
[3] |
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505-510. DOI: 10.1126/science.2200121.
pmid: 2200121
|
[4] |
Wu L, Zhang Y, Wang Z, et al. Aptamer-based cancer cell analysis and treatment[J]. ChemistryOpen, 2022, 11(10): e202200141. DOI: 10.1002/open.202200141.
|
[5] |
Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications[J]. Molecules, 2019, 24(5): 941. DOI: 10.3390/molecules24050941.
|
[6] |
Zhu C, Feng Z, Qin H, et al. Recent progress of SELEX methods for screening nucleic acid aptamers[J]. Talanta, 2024, 266(Pt 1): 124998. DOI: 10.1016/j.talanta.2023.124998.
|
[7] |
Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: a short review[J]. Talanta, 2021, 229: 122274. DOI: 10.1016/j.talanta.2021.122274.
|
[8] |
Zhu C, Yang G, Ghulam M, et al. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers[J]. Biotechnol Adv, 2019, 37(8): 107432. DOI: 10.1016/j.biotechadv. 2019.107432.
|
[9] |
Jing M, Bowser MT. Isolation of DNA aptamers using micro free flow electrophoresis[J]. Lab Chip, 2011, 11(21): 3703-3709. DOI: 10.1039/c1lc20461k.
pmid: 21947169
|
[10] |
Li Y, Tam WW, Yu Y, et al. The application of aptamer in biomarker discovery[J]. Biomark Res, 2023, 11(1): 70. DOI: 10. 1186/s40364-023-00510-8.
|
[11] |
Sun X, Xie L, Qiu S, et al. Elucidation of CKAP4-remodeled cell mechanics in driving metastasis of bladder cancer through aptamer-based target discovery[J]. Proc Natl Acad Sci U S A, 2022, 119(16): e2110500119. DOI: 10.1073/pnas.2110500119.
|
[12] |
Yu F, Chen J, Wang Z, et al. Screening aptamers for serine β- lactamase-expressing bacteria with precision-SELEX[J]. Talanta, 2021, 224: 121750. DOI: 10.1016/j.talanta.2020.121750.
|
[13] |
Nikam PS, Palachandra S, Kingston JJ. In vitro selection and characterization of ssDNA aptamers by cross-over SELEX and its application for detection of S. Typhimurium[J]. Anal Biochem, 2022, 656: 114884. DOI: 10.1016/j.ab.2022.114884.
|
[14] |
Duan Y, Zhang C, Wang Y, et al. Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer[J]. Mol Biol Rep, 2022, 49(8): 7979-7993. DOI: 10.1007/s11033-022-07317-0.
pmid: 35274201
|
[15] |
Wen K, Chen Y, Meng X, et al. A microfluidic dual-aptamer sandwich assay for rapid and cost-effective detection of recombinant proteins[J]. Microchem J, 2023, 188: 108454. DOI: 10.1016/j.microc.2023.108454.
|
[16] |
Chang D, Wang Z, Flynn CD, et al. A high-dimensional microfluidic approach for selection of aptamers with programmable binding affinities[J]. Nat Chem, 2023, 15(6): 773-780. DOI: 10.1038/s41557-023-01207-z.
pmid: 37277648
|
[17] |
Qiao N, Li J, Wu X, et al. Speeding up in vitro discovery of structure-switching aptamers via magnetic cross-linking precipitation[J]. Anal Chem, 2019, 91(21): 13383-13389. DOI: 10.1021/acs.analchem.9b00081.
pmid: 31580650
|
[18] |
Liu J, Duan Q, Shao Z, et al. Formaldehyde cross-linking-assisted phase separation for protein aptamer selection[J]. Anal Chem, 2023, 95(16): 6700-6708. DOI: 10.1021/acs.analchem.3c00434.
pmid: 37052573
|
[19] |
Komarova N, Barkova D, Kuznetsov A. Implementation of high-throughput sequencing (HTS) in aptamer selection technology[J]. Int J Mol Sci, 2020, 21(22): 8774. DOI: 10.3390/ijms21228774.
|
[20] |
Guo L, Song Y, Yuan Y, et al. Identification of nucleic acid aptamers against lactate dehydrogenase via SELEX and high-throughput sequencing[J]. Anal Bioanal Chem, 2021, 413(17): 4427-4439. DOI: 10.1007/s00216-021-03397-2.
pmid: 34028561
|
[21] |
Ferreira D, Barbosa J, Sousa DA, et al. Selection of aptamers against triple negative breast cancer cells using high throughput sequencing[J]. Sci Rep, 2021, 11(1): 8614. DOI: 10.1038/s41598-021-87998-y.
|
[22] |
Yazdian-Robati R, Bayat P, Oroojalian F, et al. Therapeutic applications of AS1411 aptamer, an update review[J]. Int J Biol Macromol, 2020, 155: 1420-1431. DOI: 10.1016/j.ijbiomac.2019.11.118.
pmid: 31734366
|
[23] |
Mehrnia SS, Hashemi B, Mowla SJ, et al. Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles[J]. Radiat Oncol, 2021, 16(1): 33. DOI: 10.1186/s13014-021-01751-3.
|
[24] |
Huang BT, Lai WY, Yeh CL, et al. AptBCis1, an aptamer-cisplatin conjugate, is effective in lung cancer leptomeningeal carcinomatosis[J]. ACS Nano, 2024, 18(41): 27905-27916. DOI: 10.1021/acsnano.4c04680.
|
[25] |
Donne R, Lujambio A. The liver cancer immune microenvironment: therapeutic implications for hepatocellular carcinoma[J]. Hepatology, 2023, 77(5): 1773-1796. DOI: 10.1002/hep.32740.
|
[26] |
Wang Z, Wu C, Liu J, et al. Aptamer-mediated hollow MnO2 for targeting the delivery of sorafenib[J]. Drug Deliv, 2023, 30(1): 28-39. DOI: 10.1080/10717544.2022.2149897.
|
[27] |
Zhang Y, Bi J, Huang J, et al. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications[J]. Int J Nanomedicine, 2020, 15: 6917-6934. DOI: 10.2147/ijn.S264498.
|
[28] |
张渊, 白芷玉, 李琪, 等. 外泌体在恶性肿瘤中的研究现状[J]. 国际肿瘤学杂志, 2023, 50(8): 484-488. DOI: 10.3760/cma.j.cn371439-20230315-00092.
|
[29] |
Han Q, Xie QR, Li F, et al. Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer[J]. Theranostics, 2021, 11(13): 6526-6541. DOI: 10. 7150/thno.53886.
pmid: 33995674
|
[30] |
Tran PHL, Wang T, Yin W, et al. Aspirin-loaded nanoexosomes as cancer therapeutics[J]. Int J Pharm, 2019, 572: 118786. DOI: 10.1016/j.ijpharm.2019.118786.
|
[31] |
Yang Y, Sun X, Xu J, et al. Circular bispecific aptamer-mediated artificial intercellular recognition for targeted T cell immunotherapy[J]. ACS Nano, 2020, 14(8): 9562-9571. DOI: 10.1021/acsnano. 9b09884.
pmid: 32584540
|
[32] |
Peng JJ, Wang L, Li Z, et al. Metabolic challenges and interventions in CAR T cell therapy[J]. Sci Immunol, 2023, 8(82): eabq3016. DOI: 10.1126/sciimmunol.abq3016.
|
[33] |
Liu CG, Wang Y, Liu P, et al. Aptamer-T cell targeted therapy for tumor treatment using sugar metabolism and click chemistry[J]. ACS Chem Biol, 2020, 15(6): 1554-1565. DOI: 10.1021/acschembio.0c00164.
|
[34] |
Menon AP, Villanueva H, Meraviglia-Crivelli D, et al. CD3 aptamers promote expansion and persistence of tumor-reactive T cells for adoptive T cell therapy in cancer[J]. Mol Ther Nucleic Acids, 2024, 35(2): 102198. DOI: 10.1016/j.omtn.2024.102198.
|
[35] |
Porreca I, Blassberg R, Harbottle J, et al. An aptamer-mediated base editing platform for simultaneous knockin and multiple gene knockout for allogeneic CAR-T cells generation[J]. Mol Ther, 2024, 32(8): 2692-2710. DOI: 10.1016/j.ymthe.2024.06.033.
|
[36] |
Liu Y, Qian X, Ran C, et al. Aptamer-based targeted protein degradation[J]. ACS Nano, 2023, 17(7): 6150-6164. DOI: 10. 1021/acsnano.2c10379.
|
[37] |
He S, Gao F, Ma J, et al. Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer[J]. Angew Chem Int Ed Engl, 2021, 60(43): 23299-23305. DOI: 10.1002/anie.202107347.
|
[38] |
Zhang L, Li L, Wang X, et al. Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin[J]. Mol Ther Nucleic Acids, 2022, 30: 66-79. DOI: 10.1016/j.omtn.2022.09.008.
|
[39] |
Wang Y, Yang G, Zhang X, et al. Antitumor effect of anti-c-Myc aptamer-based PROTAC for degradation of the c-Myc protein[J]. Adv Sci (Weinh), 2024, 11(26): 2309639. DOI: 10.1002/advs. 202309639.
|