[1] |
Hong-Bin S, Wan-Jun Y, Chen-Hui D, et al. Identification of an iron metabolism-related lncRNA signature for predicting osteosarcoma survival and immune landscape[J]. Front Genet, 2022, 13: 816460. DOI: 10.3389/fgene.2022.816460.
|
[2] |
Du SH, Li JX, Du CH, et al. Overendocytosis of superparamagnetic Iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field[J]. Oncotarget, 2017, 8(6): 9410-9424. DOI: 10.18632/oncotarget.14114.
pmid: 28031531
|
[3] |
Raghubir M, Rahman CN, Fang J, et al. Osteosarcoma growth suppression by riluzole delivery via iron oxide nanocage in nude mice[J]. Oncol Rep, 2020, 43(1): 169-176. DOI: 10.3892/or.2019.7420.
pmid: 31789402
|
[4] |
Zhou L, Zhang L, Wang S, et al. Labile iron affects pharmacological ascorbate-induced toxicity in osteosarcoma cell lines[J]. Free Radic Res, 2020, 54(6): 385-396. DOI: 10.1080/10715762.2020.1744577.
|
[5] |
Argenziano M, Di Paola A, Tortora C, et al. Effects of iron chelation in osteosarcoma[J]. Curr Cancer Drug Targets, 2021, 21(5): 443-455. DOI: 10.2174/1568009620666201230090531.
|
[6] |
Chen Y, Fan ZM, Yang Y, et al. Iron metabolism and its contribution to cancer (review)[J]. Int J Oncol, 2019, 54(4): 1143-1154. DOI: 10.3892/ijo.2019.4720.
pmid: 30968149
|
[7] |
Torti SV, Manz DH, Paul BT, et al. Iron and cancer[J]. Annu Rev Nutr, 2018, 38: 97-125. DOI: 10.1146/annurev-nutr-082117-051732.
pmid: 30130469
|
[8] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
pmid: 22632970
|
[9] |
Chifman J, Laubenbacher R, Torti SV. A systems biology approach to iron metabolism[J]. Adv Exp Med Biol, 2014, 844: 201-225. DOI: 10.1007/978-1-4939-2095-2_10.
pmid: 25480643
|
[10] |
Ma XW, Zhao JZ, Feng HL. Targeting iron metabolism in osteosarcoma[J]. Horm Cancer, 2023, 14(1): 31. DOI: 10.1007/s12672-023-00637-y.
|
[11] |
Zheng JS, Conrad M. The metabolic underpinnings of ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937. DOI: 10.1016/j.cmet.2020.10.011.
pmid: 33217331
|
[12] |
王福俤. 铁科学(Ferrology): 充满魅力的新型交叉学科[J]. 中国科学(生命科学), 2023, 53(10): 1331-1344.
|
[13] |
袁嘉豪. International Hepatology|细胞内游离铁是铁调素表达和铁代谢的关键调节子[J]. 临床肝胆病杂志, 2023, 39(7): 1686. DOI: 10.3969/j.issn.1001-5256.2023.07.026.
|
[14] |
Zhao JZ, Zhao Y, Ma XW, et al. Targeting ferroptosis in osteosarcoma[J]. J Bone Oncol, 2021, 30: 100380. DOI: 10.1016/j.jbo.2021.100380.
|
[15] |
Jiang MY, Jike YJ, Gan F, et al. Verification of ferroptosis subcluster-associated genes related to osteosarcoma and exploration of immune targeted therapy[J]. Oxid Med Cell Longev, 2022, 2022: 9942014. DOI: 10.1155/2022/9942014.
|
[16] |
吴娜, 饶颖, 周佳林, 等. 中药通过调节铁死亡作用治疗溃疡性结肠炎的用药规律研究[J]. 中成药, 2023, 45(10): 3482-3486. DOI: 10.3969/j.issn.1001-1528.2023.10.056.
|
[17] |
Chen X, Yu CH, Kang R, et al. Iron metabolism in ferroptosis[J]. Front Cell Dev Biol, 2020, 8: 590226. DOI: 10.3389/fcell.2020.590226.
|
[18] |
De Vico G, Martano M, Maiolino PL, et al. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas[J]. Vet Med Sci, 2020, 6(3): 272-276. DOI: 10.1002/vms3.258.
pmid: 32239803
|
[19] |
Isani G, Bertocchi M, Andreani G, et al. Cytotoxic effects of artemisia annua L. and pure artemisinin on the D-17 canine osteosarcoma cell line[J]. Oxid Med Cell Longev, 2019, 2019: 1615758. DOI: 10.1155/2019/1615758.
|
[20] |
Jiang MY, Jike YJ, Liu KC, et al. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1[J]. Mol Cancer, 2023, 22(1): 113. DOI: 10.1186/s12943-023-01804-z.
pmid: 37461104
|
[21] |
Zhang JH, Wang XJ, Wu WZ, et al. Expression of the Nrf2 and Keap1 proteins and their clinical significance in osteosarcoma[J]. Biochem Biophys Res Commun, 2016, 473(1): 42-46. DOI: 10.1016/j.bbrc.2016.03.047.
|
[22] |
Fu JK, Li T, Yang YZ, et al. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors[J]. Biomaterials, 2021, 268: 120537. DOI: 10.1016/j.biomaterials.2020.120537.
|
[23] |
Liu Q, Wang KZ. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J]. Cell Biol Int, 2019, 43(11): 1245-1256. DOI: 10.1002/cbin.11121.
pmid: 30811078
|
[24] |
Wen RJ, Dong X, Zhuang HW, et al. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis[J]. Phytomedicine, 2023, 116: 154881. DOI: 10.1016/j.phymed.2023.154881.
|
[25] |
Wang LF, Pan S. The regulatory effects of p53 on the typical and atypical ferroptosis in the pathogenesis of osteosarcoma: a systematic review[J]. Front Genet, 2023, 14: 1154299. DOI: 10.3389/fgene.2023.1154299.
|
[26] |
朱青, 李明, 王佳音, 等. 姜黄素经SLC7A11调控骨肉瘤细胞铁死亡机制初探[J]. 陕西中医药大学学报, 2024, 47(2): 17-21. DOI: 10.13424/j.cnki.jsctcm.2024.02.004.
|
[27] |
Luo Y, Gao X, Zou LT, et al. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells[J]. Oxid Med Cell Longev, 2021, 2021: 1783485. DOI: 10.1155/2021/1783485.
|
[28] |
Liu Z, Wang X, Li J, et al. Gambogenic acid induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the P53 signaling pathway[J]. Chem Biol Interact, 2023, 382: 110602. DOI: 10.1016/j.cbi.2023.110602.
|
[29] |
Shi YH, Gong M, Deng ZM, et al. Tirapazamine suppress osteosarcoma cells in part through SLC7A11 mediated ferroptosis[J]. Biochem Biophys Res Commun, 2021, 567: 118-124. DOI: 10.1016/j.bbrc.2021.06.036.
|
[30] |
石义华. 低氧环境下替拉扎明通过SLC7A11介导铁死亡的抗骨肉瘤作用与机制研究[D]. 武汉: 武汉大学, 2021. DOI: 10.27379/d.cnki.gwhdu.2021.001038.
|
[31] |
Gao L, Hua WZ, Tian LX, et al. Molecular mechanism of ferroptosis in orthopedic diseases[J]. Cells, 2022, 11(19): 2979. DOI: 10.3390/cells11192979.
|
[32] |
Lv HH, Zhen CX, Liu JY, et al. β-phenethyl isothiocyanate induces cell death in human osteosarcoma through altering iron metabolism, disturbing the redox balance, and activating the MAPK signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020: 5021983. DOI: 10.1155/2020/5021983.
|
[33] |
Lv HH, Zhen CX, Liu JY, et al. PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells[J]. Acta Pharmacol Sin, 2020, 41(8): 1119-1132. DOI: 10.1038/s41401-020-0376-8.
|
[34] |
He T, Lin XH, Yang CH, et al. Theaflavin-3,3'-digallate plays a ROS-mediated dual role in ferroptosis and apoptosis via the MAPK pathway in human osteosarcoma cell lines and xenografts[J]. Oxid Med Cell Longev, 2022, 2022: 8966368. DOI: 10.1155/2022/8966368.
|
[35] |
张佩. 紫铆查尔酮联合爱拉斯汀对骨肉瘤抑制及相关机制研究[D]. 长沙: 中南大学, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.000701.
|
[36] |
Lin HYI, Chen XT, Zhang CY, et al. EF24 induces ferroptosis in osteosarcoma cells through HMOX1[J]. Biomed Pharmacother, 2021, 136: 111202. DOI: 10.1016/j.biopha.2020.111202.
pmid: 33453607
|
[37] |
Ren TH, Huang J, Sun W, et al. Zoledronic acid induces ferroptosis by reducing ubiquinone and promoting HMOX1 expression in osteosarcoma cells[J]. Front Pharmacol, 2022, 13: 1071946. DOI: 10.3389/fphar.2022.1071946.
|