国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (9): 517-520.doi: 10.3760/cma.j.cn371439-20220520-00100
收稿日期:
2022-05-20
修回日期:
2022-06-05
出版日期:
2022-09-08
发布日期:
2022-10-21
通讯作者:
周菊英
E-mail:zhoujuyingsy@163.com
Zhang Lu, Zhou Juying(), Ma Chenying, Lin Zhou
Received:
2022-05-20
Revised:
2022-06-05
Online:
2022-09-08
Published:
2022-10-21
Contact:
Zhou Juying
E-mail:zhoujuyingsy@163.com
摘要:
免疫治疗主要包括单纯免疫治疗(免疫检查点抑制剂、治疗性人乳头瘤病毒疫苗、过继性T细胞疗法、双免疫治疗等)和免疫联合其他治疗(如化疗、抗血管生成治疗、放疗等)。免疫治疗的不断发展以及治疗方案的完善,可改善患者的生存和预后,为复发转移性宫颈癌的诊治提供新的思路。
张露, 周菊英, 马辰莺, 林州. 复发转移性宫颈癌免疫治疗相关进展[J]. 国际肿瘤学杂志, 2022, 49(9): 517-520.
Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer[J]. Journal of International Oncology, 2022, 49(9): 517-520.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[2] |
Wright JD, Matsuo K, Huang Y, et al. Prognostic performance of the 2018 international federation of gynecology and obstetrics cervical cancer staging guidelines[J]. Obstet Gynecol, 2019, 134(1): 49-57. DOI: 10.1097/AOG.0000000000003311.
doi: 10.1097/AOG.0000000000003311 pmid: 31188324 |
[3] |
Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance[J]. Nat Immunol, 2022, 23(5): 660-670. DOI: 10.1038/s41590-022-01141-1.
doi: 10.1038/s41590-022-01141-1 pmid: 35241833 |
[4] |
Berger KN, Pu JJ. PD-1 pathway and its clinical application: a 20 year journey after discovery of the complete human PD-1 gene[J]. Gene, 2018, 638: 20-25. DOI: 10.1016/j.gene.2017.09.050.
doi: 10.1016/j.gene.2017.09.050 |
[5] |
Im K, Combes AJ, Spitzer MH, et al. Archetypes of checkpoint-responsive immunity[J]. Trends Immunol, 2021, 42(11): 960-974. DOI: 10.1016/j.it.2021.09.007.
doi: 10.1016/j.it.2021.09.007 pmid: 34642094 |
[6] |
Frenel JS, Le Tourneau C, O'Neil B, et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ⅰb KEYNOTE-028 trial[J]. J Clin Oncol, 2017, 35(36): 4035-4041. DOI: 10.1200/JCO.2017.74.5471.
doi: 10.1200/JCO.2017.74.5471 |
[7] |
Chung HC, Ros W, Delord JP, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase Ⅱ KEYNOTE-158 study[J]. J Clin Oncol, 2019, 37(17): 1470-1478. DOI: 10.1200/JCO.18.01265.
doi: 10.1200/JCO.18.01265 |
[8] |
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy[J]. Blood, 2018, 131(1): 58-67. DOI: 10. 1182/blood-2017-06-741033.
doi: 10.1182/blood-2017-06-741033 pmid: 29118008 |
[9] |
Lheureux S, Butler MO, Clarke B, et al. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma[J]. JAMA Oncol, 2018, 4(7): e173776. DOI: 10.1001/jamaoncol.2017.3776.
doi: 10.1001/jamaoncol.2017.3776 |
[10] |
Qin S, Xu L, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4[J]. Mol Cancer, 2019, 18(1): 155. DOI: 10.1186/s12943-019-1091-2.
doi: 10.1186/s12943-019-1091-2 pmid: 31690319 |
[11] |
Akhatova A, Chan CK, Azizan A, et al. The efficacy of therapeutic DNA vaccines expressing the human papillomavirus E6 and E7 oncoproteins for treatment of cervical cancer: systematic review[J]. Vaccines (Basel), 2021, 10(1): 53. DOI: 10.3390/vaccines10010053.
doi: 10.3390/vaccines10010053 |
[12] |
Kim TJ, Jin HT, Hur SY, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients[J]. Nat Commun, 2014, 5: 5317. DOI: 10.1038/ncomms6317.
doi: 10.1038/ncomms6317 pmid: 25354725 |
[13] |
Hasan Y, Furtado L, Tergas A, et al. A phase 1 trial assessing the safety and tolerability of a therapeutic DNA vaccination against HPV16 and HPV18 E6/E7 oncogenes after chemoradiation for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2020, 107(3): 487-498. DOI: 10.1016/j.ijrobp.2020.02.031.
doi: 10.1016/j.ijrobp.2020.02.031 |
[14] |
Alvarez RD, Huh WK, Bae S, et al. A pilot study of pNGVL4a-CRT/E7(detox) for the treatment of patients with HPV16+ cervical intraepithelial neoplasia 2/3 (CIN2/3)[J]. Gynecol Oncol, 2016, 140(2): 245-252. DOI: 10.1016/j.ygyno.2015.11.026.
doi: 10.1016/j.ygyno.2015.11.026 pmid: 26616223 |
[15] |
Stevanović S, Draper LM, Langhan MM, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells[J]. J Clin Oncol, 2015, 33(14): 1543-1550. DOI: 10.1200/JCO.2014.58.9093.
doi: 10.1200/JCO.2014.58.9093 pmid: 25823737 |
[16] |
Stevanović S, Helman SR, Wunderlich JR, et al. A phase Ⅱ study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers[J]. Clin Cancer Res, 2019, 25(5): 1486-1493. DOI: 10.1158/1078-0432.CCR-18-2722.
doi: 10.1158/1078-0432.CCR-18-2722 pmid: 30518633 |
[17] |
Jin BY, Campbell TE, Draper LM, et al. Engineered T cells targe-ting E7 mediate regression of human papillomavirus cancers in a murine model[J]. JCI Insight, 2018, 3(8): e99488. DOI: 10.1172/jci.insight.99488.
doi: 10.1172/jci.insight.99488 |
[18] |
Naumann RW, Oaknin A, Meyer T, et al. LBA62-Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: results from CheckMate 358[J]. Ann Oncol, 2019, 30(Supplement 5): v898-v899. DOI: 10.1093/annonc/mdz394.059.
doi: 10.1093/annonc/mdz394.059 |
[19] |
O'Malley D, Neffa M, Monk BJ, et al. 724MO balstilimab (anti-PD-1) in combination with zalifrelimab (anti-CTLA-4): final results from a phase Ⅱ study in patients (pts) with recurrent/metastatic (R/M) cervical cancer (CC)[J]. Ann Oncol, 2021, 32: S727. DOI: 10.1016/j.annonc.2021.08.1167.
doi: 10.1016/j.annonc.2021.08.1167 |
[20] |
Bose CK. Balstilimab and other immunotherapy for recurrent and metastatic cervical cancer[J]. Med Oncol, 2022, 39(4): 47. DOI: 10.1007/s12032-022-01646-7.
doi: 10.1007/s12032-022-01646-7 pmid: 35092506 |
[21] |
Rizvi H, Sanchez-Vega F, La K, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing[J]. J Clin Oncol, 2018, 36(7): 633-641. DOI: 10.1200/JCO.2017.75.3384.
doi: 10.1200/JCO.2017.75.3384 pmid: 29337640 |
[22] |
Toor SM, Elkord E. Therapeutic prospects of targeting myeloid-derived suppressor cells and immune checkpoints in cancer[J]. Immunol Cell Biol, 2018, 96(9): 888-897. DOI: 10.1111/imcb.12054.
doi: 10.1111/imcb.12054 pmid: 29635843 |
[23] |
周晖, 刘昀昀, 罗铭, 等. 《2022NCCN子宫颈癌临床实践指南(第1版)》 解读[J]. 中国实用妇科与产科杂志, 2021, 37(12): 1220-1226. DOI: 10.19538/j.fk2021120112.
doi: 10.19538/j.fk2021120112 |
[24] |
Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer[J]. N Engl J Med, 2021, 385(20): 1856-1867. DOI: 10.1056/NEJMoa2112435.
doi: 10.1056/NEJMoa2112435 |
[25] |
Kagabu M, Nagasawa T, Sato C, et al. Immunotherapy for uterine cervical cancer using checkpoint inhibitors: future directions[J]. Int J Mol Sci, 2020, 21(7): 2335. DOI: 10.3390/ijms21072335.
doi: 10.3390/ijms21072335 |
[26] |
Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa[J]. Nat Rev Clin Oncol, 2018, 15(5): 310-324. DOI: 10.1038/nrclinonc.2018.9.
doi: 10.1038/nrclinonc.2018.9 pmid: 29434333 |
[27] |
Lan C, Shen J, Wang Y, et al. Camrelizumab plus apatinib in patients with advanced cervical cancer (CLAP): a multicenter, open-label, single-arm, phase Ⅱ trial[J]. J Clin Oncol, 2020, 38(34): 4095-4106. DOI: 10.1200/JCO.20.01920.
doi: 10.1200/JCO.20.01920 |
[28] |
Friedman CF, Snyder Charen A, Zhou Q, et al. Phase Ⅱ study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer[J]. J Immunother Cancer, 2020, 8(2): e001126. DOI: 10.1136/jitc-2020-001126.
doi: 10.1136/jitc-2020-001126 |
[29] |
Grau JF, Farinas-Madrid L, Oaknin A. A randomized phase Ⅲ trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage ⅣB), persistent, or recurrent carcinoma of the cervix: the BEATcc study (ENGOT-Cx10/GEICO 68-C/JGOG1084/GOG-3030)[J]. Int J Gynecol Cancer, 2020, 30(1): 139-143. DOI: 10.1136/ijgc-2019-000880.
doi: 10.1136/ijgc-2019-000880 |
[30] |
Dyer BA, Feng CH, Eskander R, et al. Current status of clinical trials for cervical and uterine cancer using immunotherapy combined with radiation[J]. Int J Radiat Oncol Biol Phys, 2021, 109(2): 396-412. DOI: 10.1016/j.ijrobp.2020.09.016.
doi: 10.1016/j.ijrobp.2020.09.016 |
[31] |
Liu Y, Dong Y, Kong L, et al. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors[J]. J Hematol Oncol, 2018, 11(1): 104. DOI: 10.1186/s13045-018-0647-8.
doi: 10.1186/s13045-018-0647-8 |
[32] |
Feng CH, Mell LK, Sharabi AB, et al. Immunotherapy with radiotherapy and chemoradiotherapy for cervical cancer[J]. Semin Radiat Oncol, 2020, 30(4): 273-280. DOI: 10.1016/j.semradonc.2020.05.003.
doi: S1053-4296(20)30036-9 pmid: 32828383 |
[33] |
中华医学会妇科肿瘤学分会. 妇科肿瘤免疫检查点抑制剂临床应用指南[J]. 协和医学杂志, 2021, 12(6): 854-880. DOI: 10.12290/xhyxzz.2021-0683.
doi: 10.12290/xhyxzz.2021-0683 |
[34] |
Verma V, Cushman TR, Tang C, et al. Toxicity of radiation and immunotherapy combinations[J]. Adv Radiat Oncol, 2018, 3(4): 506-511. DOI: 10.1016/j.adro.2018.08.003.
doi: 10.1016/j.adro.2018.08.003 pmid: 30370349 |
[1] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[2] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[3] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[4] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[5] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[6] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[7] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[8] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[9] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[10] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[11] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[12] | 李书月, 马辰莺, 周菊英, 徐晓婷, 秦颂兵. 寡转移非小细胞肺癌的放疗进展[J]. 国际肿瘤学杂志, 2024, 51(3): 170-174. |
[13] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[14] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[15] | 崔腾璐, 吕璐, 孙鹏飞. 放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||