[1] |
Zhao C, Gao F, Li Q, et al. The distributional characteristic and growing trend of pancreatic cancer in China[J]. Pancreas, 2019,48(3):309-314. DOI: 10.1097/MPA.0000000000001222.
doi: 10.1097/MPA.0000000000001222
pmid: 30855427
|
[2] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019,69(1):7-34. DOI: 10.3322/caac.21551.
pmid: 30620402
|
[3] |
Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer[J]. Lancet, 2016,388(10039):73-85. DOI: 10.1016/S0140-6736(16)00141-0.
doi: 10.1016/S0140-6736(16)00141-0
pmid: 26830752
|
[4] |
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A, 2005,102(43):15545-15550. DOI: 10.1073/pnas.0506580102.
doi: 10.1073/pnas.0506580102
pmid: 16199517
|
[5] |
Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes[J]. Nat Genet, 2003,34(3):267-273. DOI: 10.1038/ng1180.
pmid: 12808457
|
[6] |
Zhang Q, Zeng L, Chen Y, et al. Pancreatic cancer epidemiology, detection, and management[J]. Gastroenterol Res Pract, 2016,2016:8962321. DOI: 10.1155/2016/8962321.
pmid: 26941789
|
[7] |
Lai E, Puzzoni M, Ziranu P, et al. New therapeutic targets in pancreatic cancer[J]. Cancer Treat Rev, 2019,81:101926. DOI: 10.1016/j.ctrv.2019.101926.
doi: 10.1016/j.ctrv.2019.101926
pmid: 31739115
|
[8] |
Bartha Á, Gy″orffy B. Comprehensive outline of whole exome sequencing data analysis tools available in clinical oncology[J]. Cancers (Basel), 2019,11(11):1725. DOI: 10.3390/cancers11111725.
doi: 10.3390/cancers11111725
|
[9] |
Hoffmann K, Mehrle S, Schmidt J, et al. Interferon-alpha restitutes the chemosensitivity in pancreatic cancer[J]. Anticancer Res, 2008,28(3A):1499-1507.
pmid: 18630504
|
[10] |
Saidi RF, Remine SG, Jacobs MJ. Interferon receptor alpha/beta is associated with improved survival after adjuvant therapy in resected pancreatic cancer[J]. HPB (Oxford), 2007,9(4):289-294. DOI: 10.1080/13651820701329241.
doi: 10.1080/13651820701329241
|
[11] |
Hayashi T, Ding Q, Kuwahata T, et al. Interferon-alpha modulates the chemosensitivity of CD133-expressing pancreatic cancer cells to gemcitabine[J]. Cancer Sci, 2012,103(5):889-896. DOI: 10.1111/j.1349-7006.2012.02235.x.
doi: 10.1111/j.1349-7006.2012.02235.x
pmid: 22320450
|
[12] |
Saxton RA, Knockenhauer KE, Wolfson RL, et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway[J]. Science, 2016,351(6268):53-58. DOI: 10.1126/science.aad2087.
doi: 10.1126/science.aad2087
pmid: 26586190
|
[13] |
Aylett CH, Sauer E, Imseng S, et al. Architecture of human mTOR complex 1[J]. Science, 2016,351(6268):48-52. DOI: 10.1126/science.aaa3870.
doi: 10.1126/science.aaa3870
pmid: 26678875
|
[14] |
Wolfson RL, Chantranupong L, Saxton RA, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway[J]. Science, 2016,351(6268):43-48. DOI: 10.1126/science.aab2674.
doi: 10.1126/science.aab2674
pmid: 26449471
|
[15] |
Wirth M, Mahboobi S, Krämer OH, et al. Concepts to target MYC in pancreatic cancer[J]. Mol Cancer Ther, 2016,15(8):1792-1798. DOI: 10.1158/1535-7163.MCT-16-0050.
doi: 10.1158/1535-7163.MCT-16-0050
pmid: 27406986
|
[16] |
Shen W, Tao GQ, Zhang Y, et al. TGF-β in pancreatic cancer initiation and progression: two sides of the same coin[J]. Cell Biosci, 2017,7:39. DOI: 10.1186/s13578-017-0168-0.
pmid: 28794854
|
[17] |
Huang XY, Huang ZL, Yang JH, et al. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting[J]. J Exp Clin Cancer Res, 2016,35:46. DOI: 10.1186/s13046-016-0317-z.
pmid: 26975989
|
[18] |
Amsterdam A, Raanan C, Schreiber L, et al. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer[J]. Biochem Biophys Res Commun, 2013,433(2):157-162. DOI: 10.1016/j.bbrc.2013.02.038.
pmid: 23438436
|