
国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (12): 759-762.doi: 10.3760/cma.j.cn371439-20220816-00149
收稿日期:2022-06-23
									
				
											修回日期:2022-07-31
									
				
									
				
											出版日期:2022-12-08
									
				
											发布日期:2023-01-05
									
			通讯作者:
					贾秀红
											E-mail:jiaxiuhong001@163.com
												基金资助:Received:2022-06-23
									
				
											Revised:2022-07-31
									
				
									
				
											Online:2022-12-08
									
				
											Published:2023-01-05
									
			Contact:
					Jia Xiuhong   
											E-mail:jiaxiuhong001@163.com
												Supported by:摘要:
白血病是一类血液系统恶性肿瘤。铁死亡是一种铁依赖的脂质过氧化积累介导的新型细胞死亡方式,其参与白血病的发生发展,激活铁死亡通路中不同的调节位点可促进白血病细胞的死亡。通过诱导细胞发生铁死亡的方式达到治疗白血病的目的,为白血病的治疗研究提供新的方向。
周欣宇, 贾秀红. 铁死亡在白血病治疗中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(12): 759-762.
Zhou Xinyu, Jia Xiuhong. Research progress of ferroptosis in the treatment of leukemia[J]. Journal of International Oncology, 2022, 49(12): 759-762.
| [1] |  
											  Wang F, Lv H, Zhao B, et al.  Iron and leukemia: new insights for future treatments[J]. J Exp Clin Cancer Res, 2019, 38(1): 406. DOI: 10.1186/s13046-019-1397-3. 
											 												 doi: 10.1186/s13046-019-1397-3  | 
										
| [2] |  
											  Weber S, Parmon A, Kurrle N, et al.  The clinical significance of iron overload and iron metabolism in myelodysplastic syndrome and acute myeloid leukemia[J]. Front Immunol, 2020, 11: 627662. DOI: 10.3389/fimmu.2020.627662. 
											 												 doi: 10.3389/fimmu.2020.627662  | 
										
| [3] |  
											  Dixon SJ, Lemberg KM, Lamprecht MR, et al.  Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042. 
											 												 doi: 10.1016/j.cell.2012.03.042 pmid: 22632970  | 
										
| [4] |  
											  Doll S, Conrad M. Iron and ferroptosis: a still ill-defined liaison[J]. IUBMB Life, 2017, 69(6): 423-434. DOI: 10.1002/iub.1616. 
											 												 doi: 10.1002/iub.1616 pmid: 28276141  | 
										
| [5] |  
											  Xie Y, Hou W, Song X, et al.  Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379. DOI: 10.1038/cdd.2015.158. 
											 												 doi: 10.1038/cdd.2015.158 pmid: 26794443  | 
										
| [6] |  
											  Wei J, Nai GY, Dai Y, et al.  Dipetidyl peptidase-4 and transferrin receptor serve as prognostic biomarkers for acute myeloid leukemia[J]. Ann Transl Med, 2021, 9(17): 1381. DOI: 10.21037/atm-21-3368. 
											 												 doi: 10.21037/atm-21-3368 pmid: 34733933  | 
										
| [7] | Ye F, Chai W, Xie M, et al. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRASQ61L cells[J]. Am J Cancer Res, 2019, 9(4): 730-739. | 
| [8] |  
											  Huang X, Zhou D, Ye X, et al.  A novel ferroptosis-related gene signature can predict prognosis and influence immune microenviron-ment in acute myeloid leukemia[J]. Bosn J Basic Med Sci, 2022, 22(4): 608-628. DOI: 10.17305/bjbms.2021.6274. 
											 												 doi: 10.17305/bjbms.2021.6274  | 
										
| [9] |  
											  Zhou F, Chen B. Prognostic significance of ferroptosis-related genes and their methylation in AML[J]. Hematology, 2021, 26(1): 919-930. DOI: 10.1080/16078454.2021.1996055. 
											 												 doi: 10.1080/16078454.2021.1996055 pmid: 34789073  | 
										
| [10] |  
											  Liu S, Wu W, Chen Q, et al.  TXNRD1: a key regulator involved in the ferroptosis of CML cells induced by cysteine depletion in vitro[J]. Oxid Med Cell Longev, 2021, 2021: 7674565. DOI: 10.1155/2021/7674565. 
											 												 doi: 10.1155/2021/7674565  | 
										
| [11] |  
											  陶圆. BACH2在急性髓系白血病中的表达及作用机制研究[D]. 沈阳: 中国医科大学, 2021. DOI: 10.27652/d.cnki.gzyku.2021.000116. 
											 												 doi: 10.27652/d.cnki.gzyku.2021.000116  | 
										
| [12] |  
											  Wang Z, Chen X, Liu N, et al.  A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis[J]. Mol Ther, 2021, 29(1): 263-274. DOI: 10.1016/j.ymthe.2020.09.024. 
											 												 doi: 10.1016/j.ymthe.2020.09.024 pmid: 33002417  | 
										
| [13] |  
											  Wei J, Xie Q, Liu X, et al.  Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia[J]. Ann Transl Med, 2020, 8(11): 678. DOI: 10.21037/atm-20-3296. 
											 												 doi: 10.21037/atm-20-3296 pmid: 32617298  | 
										
| [14] |  
											  Dong LH, Huang JJ, Zu P, et al.  CircKDM4C upregulates P53 by sponging hsa-let-7b-5p to induce ferroptosis in acute myeloid leukemia[J]. Environ Toxicol, 2021, 36(7): 1288-1302. DOI: 10.1002/tox.23126. 
											 												 doi: 10.1002/tox.23126  | 
										
| [15] |  
											  Jin L, Tong L. PAQR3 inhibits proliferation and aggravates ferrop-tosis in acute lymphoblastic leukemia through modulation Nrf2 stability[J]. Immun Inflamm Dis, 2021, 9(3): 827-839. DOI: 10.1002/iid3.437. 
											 												 doi: 10.1002/iid3.437  | 
										
| [16] |  
											  宁涛. UVRAG参与K562白血病细胞铁死亡过程[D]. 衡阳: 南华大学, 2020. DOI: 10.27234/d.cnki.gnhuu.2020.000975. 
											 												 doi: 10.27234/d.cnki.gnhuu.2020.000975  | 
										
| [17] |  
											  朱婷, 范洋. 自噬通过影响铁稳态调节急性淋巴细胞白血病细胞对铁死亡激活剂的敏感性[J]. 中国实验血液学杂志, 2021, 29(5): 1380-1386. DOI: 10.19746/j.cnki.issn1009-2137.2021.05.003. 
											 												 doi: 10.19746/j.cnki.issn1009-2137.2021.05.003  | 
										
| [18] |  
											  Zhang X, Zhang X, Liu K, et al.  HIVEP3 cooperates with ferrop-tosis gene signatures to confer adverse prognosis in acute myeloid leukemia[J/OL]. Cancer Med. [2022-05-10]. https://pubmed.ncbi.nlm.nih.gov/35535739/. DOI: 10.1002/cam4.4806. 
											 												 doi: 10.1002/cam4.4806  | 
										
| [19] |  
											  Yang X, Li Y, Zhang Y, et al.  Circ_0000745 promotes acute lym-phoblastic leukemia progression through mediating miR-494-3p/NET1 axis[J]. Hematology, 2022, 27(1): 11-22. DOI: 10.1080/16078454.2021.2008590. 
											 												 doi: 10.1080/16078454.2021.2008590 pmid: 34957935  | 
										
| [20] |  
											  程霖, 金鑫, 卢文艺, 等. RSL3诱导急性白血病细胞株MOLM13及其耐药细胞株发生铁死亡的作用及相关机制研究[J]. 中国实验血液学杂志, 2021, 29(4): 1109-1118. DOI: 10.19746/j.cnki.issn1009-2137.2021.04.014. 
											 												 doi: 10.19746/j.cnki.issn1009-2137.2021.04.014  | 
										
| [21] |  
											  Sagasser J, Ma BN, Baecker D, et al.  A new approach in cancer treatment: discovery of chloride [N, N'-disalicylidene-1,2-phenylenediamine] iron (Ⅲ) complexes as ferroptosis inducers[J]. J Med Chem, 2019, 62(17): 8053-8061. DOI: 10.1021/acs.jmedchem.9b00814. 
											 												 doi: 10.1021/acs.jmedchem.9b00814 pmid: 31369259  | 
										
| [22] |  
											  Zhu HY, Huang ZX, Chen GQ, et al.  Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy[J]. Biochem Biophys Res Commun, 2019, 516(4): 1265-1271. DOI: 10.1016/j.bbrc.2019.06.070. 
											 												 doi: 10.1016/j.bbrc.2019.06.070  | 
										
| [23] |  
											  Mbaveng AT, Chi GF, Bonsou IN, et al.  N-acetylglycoside of oleanolic acid (aridanin) displays promising cytotoxicity towards human and animal cancer cells, inducing apoptotic, ferroptotic and necroptotic cell death[J]. Phytomedicine, 2020, 76: 153261. DOI: 10.1016/j.phymed.2020.153261. 
											 												 doi: 10.1016/j.phymed.2020.153261  | 
										
| [24] |  
											  Mbaveng AT, Ndontsa BL, Kuete V, et al.  A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death[J]. Phytomedicine, 2018, 43: 78-85. DOI: 10.1016/j.phymed.2018.03.035. 
											 												 doi: S0944-7113(18)30070-9 pmid: 29747757  | 
										
| [25] |  
											  Mbaveng AT, Noulala CGT, Samba ARM, et al.  The alkaloid, soyauxinium chloride, displays remarkable cytotoxic effects towards a panel of cancer cells, inducing apoptosis, ferroptosis and necroptosis[J]. Chem Biol Interact, 2021, 333: 109334. DOI: 10.1016/j.cbi.2020.109334. 
											 												 doi: 10.1016/j.cbi.2020.109334  | 
										
| [26] |  
											  Du J, Wang T, Li Y, et al.  DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369. DOI: 10.1016/j.freeradbiomed.2018.12.011. 
											 												 doi: 10.1016/j.freeradbiomed.2018.12.011  | 
										
| [27] |  
											  Luo T, Gao J, Lin N, et al.  Effects of two kinds of iron nanopar-ticles as reactive oxygen species inducer and scavenger on the transcriptomic profiles of two human leukemia cells with different stemness[J]. Nanomaterials (Basel), 2020, 10(10): 1951. DOI: 10.3390/nano10101951. 
											 												 doi: 10.3390/nano10101951  | 
										
| [28] |  
											  Yusuf RZ, Saez B, Sharda A, et al.  Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers[J]. Blood, 2020, 136(11): 1303-1316. DOI: 10.1182/blood.2019001808. 
											 												 doi: 10.1182/blood.2019001808 pmid: 32458004  | 
										
| [29] |  
											  Pardieu B, Pasanisi J, Ling F, et al.  Cystine uptake inhibition poten-tiates front-line therapies in acute myeloid leukemia[J]. Leukemia, 2022, 36(6): 1585-1595. DOI: 10.1038/s41375-022-01573-6. 
											 												 doi: 10.1038/s41375-022-01573-6  | 
										
| [30] |  
											  Greco G, Schnekenburger M, Catanzaro E, et al.  Discovery of sulforaphane as an inducer of ferroptosis in U-937 leukemia cells: expanding its anticancer potential[J]. Cancers (Basel), 2021, 14(1): 76. DOI: 10.3390/cancers14010076. 
											 												 doi: 10.3390/cancers14010076  | 
										
| [31] |  
											  Birsen R, Larrue C, Decroocq J, et al.  APR-246 induces early cell death by ferroptosis in acute myeloid leukemia[J]. Haema-tologica, 2022, 107(2): 403-416. DOI: 10.3324/haematol.2020. 259531. 
											 												 doi: 10.3324/haematol.2020. 259531  | 
										
| [32] |  
											  Cao K, Du Y, Bao X, et al.  Glutathione-bioimprinted nanoparticles targeting of N6-methyladenosine FTO demethylase as a strategy against leukemic stem cells[J]. Small, 2022, 18(13): e2106558. DOI: 10.1002/smll.202106558. 
											 												 doi: 10.1002/smll.202106558  | 
										
| [33] |  
											  Li Q, Su R, Bao X, et al.  Glycyrrhetinic acid nanoparticles com-bined with ferrotherapy for improved cancer immunotherapy[J]. Acta Biomater, 2022, 144: 109-120. DOI: 10.1016/j.actbio.2022.03.030. 
											 												 doi: 10.1016/j.actbio.2022.03.030  | 
										
| [34] |  
											  Lou S, Hong H, Maihesuti L, et al.  Inhibitory effect of hydnocarpin D on T-cell acute lymphoblastic leukemia via induction of autophagy-dependent ferroptosis[J]. Exp Biol Med (Maywood), 2021, 246(13): 1541-1553. DOI: 10.1177/15353702211004870. 
											 												 doi: 10.1177/15353702211004870  | 
										
| [35] |  
											  Du Y, Bao J, Zhang MJ, et al.  Targeting ferroptosis contributes to ATPR-induced AML differentiation via ROS-autophagy-lysosomal pathway[J]. Gene, 2020, 755: 144889. DOI: 10.1016/j.gene.2020.144889. 
											 												 doi: 10.1016/j.gene.2020.144889  | 
										
| [1] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. | 
| [2] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. | 
| [3] | 滕远, 李莉娟, 张连生. MCL-1及其抑制剂在血液恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 119-122. | 
| [4] | 王军, 贾秀红. TGF-β/Smad信号通路与急性白血病[J]. 国际肿瘤学杂志, 2023, 50(8): 498-502. | 
| [5] | 王婷, 李文倩, 解友邦. 低氧与急性髓系白血病细胞氧感受通路的相关性[J]. 国际肿瘤学杂志, 2023, 50(8): 503-507. | 
| [6] | 邢明泉, 葛洪峰, 张丽侠, 韩浩, 吴维霞. 疑似免疫性血小板减少症的侵袭性自然杀伤细胞白血病1例[J]. 国际肿瘤学杂志, 2023, 50(5): 318-320. | 
| [7] | 黄锐, 张允清. 安罗替尼单药在PS评分差的广泛期小细胞肺癌二线治疗中的临床疗效[J]. 国际肿瘤学杂志, 2023, 50(12): 705-710. | 
| [8] | 张婷, 贾秀红. 细胞焦亡在白血病中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(11): 696-700. | 
| [9] | 徐航程, 吴云, 王佳玉. HER2低表达乳腺癌研究进展[J]. 国际肿瘤学杂志, 2022, 49(9): 513-516. | 
| [10] | 张露, 周菊英, 马辰莺, 林州. 复发转移性宫颈癌免疫治疗相关进展[J]. 国际肿瘤学杂志, 2022, 49(9): 517-520. | 
| [11] | 高一钊, 刘洋, 刘秋龙, 邢金良. 循环游离核酸在结直肠癌临床诊疗中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 555-559. | 
| [12] | 陆佳玲, 黄慧娟, 刘丹, 陈妍心, 马骁, 吴德沛. 博纳吐单抗治疗急性B淋巴细胞白血病的疗效和安全性[J]. 国际肿瘤学杂志, 2022, 49(8): 494-498. | 
| [13] | 曾艳, 罗盼, 王子琪, 吴伟莉. 药物在头颈部肿瘤治疗中引起铁死亡的作用机制[J]. 国际肿瘤学杂志, 2022, 49(3): 173-176. | 
| [14] | 王玥, 吴琼, 许愿, 龚唯, 徐晓婷. 老年宫颈癌的筛查与治疗进展[J]. 国际肿瘤学杂志, 2022, 49(12): 754-758. | 
| [15] | 陈曦, 母丹, 严钦, 刘文君. 骨髓微环境与白血病细胞分化[J]. 国际肿瘤学杂志, 2021, 48(3): 189-192. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
