国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (8): 489-493.doi: 10.3760/cma.j.cn371439-20201105-00093
收稿日期:
2020-11-05
修回日期:
2021-05-15
出版日期:
2021-08-08
发布日期:
2021-09-08
通讯作者:
贾军梅
E-mail:jiajunmei1972@163.com
Received:
2020-11-05
Revised:
2021-05-15
Online:
2021-08-08
Published:
2021-09-08
Contact:
Jia Junmei
E-mail:jiajunmei1972@163.com
摘要:
免疫治疗是一种新型抗肿瘤方法,免疫检查点抑制剂的应用大大提高了患者的生存获益,但是免疫治疗耐药问题影响治疗疗效。因此,探索肿瘤免疫治疗耐药机制及解决耐药问题至关重要。肿瘤微环境缺氧状态是免疫耐药的关键因素,缺氧通过多种作用机制抑制免疫细胞杀伤功能,促肿瘤细胞免疫逃逸;阻断缺氧相关通路可能成为克服免疫治疗耐药的突破点。通过总结缺氧状态诱导免疫治疗耐药的机制,有助于探讨缺氧诱导因子-1α(HIF-1α)相关蛋白靶向药在免疫治疗临床应用中的发展前景。
陈佩瑶, 贾军梅. 缺氧影响免疫治疗耐药的机制与应用[J]. 国际肿瘤学杂志, 2021, 48(8): 489-493.
Chen Peiyao, Jia Junmei. Mechanism and application of hypoxia affecting immunotherapy drug resistance[J]. Journal of International Oncology, 2021, 48(8): 489-493.
[1] |
Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?[J]. Cancer Commun (Lond), 2019,39(1):22. DOI: 10.1186/s40880-019-0368-6.
doi: 10.1186/s40880-019-0368-6 |
[2] |
张博, 吴建春, 骆莹滨, 等. 肿瘤免疫治疗及其相关标记物的研究现状与思考[J]. 中国肿瘤临床, 2020,47(11):581-585. DOI: 10.3969/j.issn.1000-8179.2020.11.306.
doi: 10.3969/j.issn.1000-8179.2020.11.306 |
[3] |
Haslam A, Gill J, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for immune checkpoint inhibitor drugs[J]. JAMA Netw Open, 2020,3(3):e200423. DOI: 10.1001/jamanetworkopen.2020.0423.
doi: 10.1001/jamanetworkopen.2020.0423 |
[4] |
杨蕊菡. 肿瘤免疫治疗的耐药机制[J]. 中国肿瘤生物治疗杂志, 2019,26(5):602-608. DOI: 10.3872/j.issn.1007-385x.2019.05.019.
doi: 10.3872/j.issn.1007-385x.2019.05.019 |
[5] |
王相宜, 张锦, 李燕, 等. 肿瘤代谢调控与肿瘤免疫治疗以及代谢分析方法研究进展[J]. 药学学报, 2020,55(9):2080-2091. DOI: 10.16438/j.0513-4870.2020-1025.
doi: 10.16438/j.0513-4870.2020-1025 |
[6] |
闫东科, 吕平. 低氧诱导因子及其抑制剂研究进展[J]. 生物技术进展, 2019,9(4):332-340. DOI: 10.19586/j.2095-2341.2019.0027.
doi: 10.19586/j.2095-2341.2019.0027 |
[7] |
钱雯川, 王凡. PD-1/PD-L1免疫治疗在恶性肿瘤中的研究进展[J]. 中国肿瘤临床与康复, 2020,27(3):381-382. DOI: 10.13455/j.cnki.cjcor.2020.03.33.
doi: 10.13455/j.cnki.cjcor.2020.03.33 |
[8] |
Barsoum IB, Smallwood CA, Siemens DR, et al. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells[J]. Cancer Res, 2014,74(3):665-674. DOI: 10.1158/0008-5472.CAN-13-0992.
doi: 10.1158/0008-5472.CAN-13-0992 pmid: 24336068 |
[9] |
苏纯洁, 何前进, 毛伟明, 等. 肝癌组织中PD-L1和HIF-1α的相关性研究[J]. 中国现代普通外科进展, 2019,22(1):22-25. DOI: 10.3969/j.issn.1009-9905.2019.01.006.
doi: 10.3969/j.issn.1009-9905.2019.01.006 |
[10] |
Hei Y, Teng B, Zeng Z, et al. Multifunctional immunoliposomes combining catalase and PD-L1 antibodies overcome tumor hypoxia and enhance immunotherapeutic effects against melanoma[J]. Int J Nanomedicine, 2020,15:1677-1691. DOI: 10.2147/IJN.S225807.
doi: 10.2147/IJN.S225807 |
[11] |
Zuo HX, Jin Y, Wang Z, et al. Curcumol inhibits the expression of programmed cell death-ligand 1 through crosstalk between hypoxia-inducible factor-1α and STAT3 (T705) signaling pathways in hepa-tic cancer[J]. J Ethnopharmacol, 2020,257:112835. DOI: 10.1016/j.jep.2020.112835.
doi: 10.1016/j.jep.2020.112835 |
[12] |
Wang Z, Li MY, Zhang ZH, et al. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells[J]. Pharmacol Res, 2020,155:104727. DOI: 10.1016/j.phrs.2020.104727.
doi: S1043-6618(19)32925-1 pmid: 32113874 |
[13] |
鲍轶, 莫娟芬. T细胞耗竭、失能和衰老状态及其与肿瘤免疫治疗的研究进展[J]. 中华医学杂志, 2019,99(7):557-560. DOI: 10.3760/cma.j.issn.0376-2491.2019.07.018.
doi: 10.3760/cma.j.issn.0376-2491.2019.07.018 |
[14] |
Cohen AD, Schaer DA, Liu C, et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation[J]. PLoS One, 2010,5(5):e10436. DOI: 10.1371/journal.pone.0010436.
doi: 10.1371/journal.pone.0010436 |
[15] |
张康. 调节性T细胞在肿瘤免疫治疗中的研究进展[J]. 右江民族医学院学报, 2015,37(4):635-637. DOI: 10.3969/j.issn.1001-5817.2015.04.043.
doi: 10.3969/j.issn.1001-5817.2015.04.043 |
[16] |
Wang M, Wang W, Ding J, et al. Downregulation of Rab17 promotes cell proliferation and invasion in non-small cell lung cancer through STAT3/HIF-1α/VEGF signaling[J]. Thorac Cancer, 2020,11(2):379-388. DOI: 10.1111/1759-7714.13278.
doi: 10.1111/1759-7714.13278 |
[17] |
Lee YH, Bae HC, Noh KH, et al. Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes[J]. Clin Cancer Res, 2015,21(6):1438-1446. DOI: 10.1158/1078-0432.CCR-14-1979.
doi: 10.1158/1078-0432.CCR-14-1979 |
[18] |
安田丽, 李亮亮, 赵丽. 骨髓微环境影响调节性T细胞促进血液恶性肿瘤发展的研究进展[J]. 中国免疫学杂志, 2021, 37(5): 635-640, 封3-封4. DOI: 10.3969/j.issn.1000-484X.2021.05.024.
doi: 10.3969/j.issn.1000-484X.2021.05.024 |
[19] |
Liu X, Mo W, Ye J, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition[J]. Nat Commun, 2018,9(1):249. DOI: 10.1038/s41467-017-02689-5.
doi: 10.1038/s41467-017-02689-5 |
[20] |
Tamura R, Morimoto Y, Sato M, et al. Difference in the hypoxic immunosuppressive microenvironment of patients with neurofibromatosis type 2 schwannomas and sporadic schwannomas[J]. J Neurooncol, 2020,146(2):265-273. DOI: 10.1007/s11060-019-03388-5.
doi: 10.1007/s11060-019-03388-5 |
[21] |
Yamazaki H, Tanaka T, Mie K, et al. Assessment of postoperative adjuvant treatment using toceranib phosphate against adenocarcinoma in dogs[J]. J Vet Intern Med, 2020,34(3):1272-1281. DOI: 10.1111/jvim.15768.
doi: 10.1111/jvim.15768 pmid: 32267594 |
[22] |
Zhang W, Huang Q, Xiao W, et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis[J]. Front Immunol, 2020,11:18. DOI: 10.3389/fimmu.2020.00018.
doi: 10.3389/fimmu.2020.00018 |
[23] |
Engelbertsen D, Autio A, Verwilligen RAF, et al. Increased lymphocyte activation and atherosclerosis in CD47-deficient mice[J]. Sci Rep, 2019,9(1):10608. DOI: 10.1038/s41598-019-46942-x.
doi: 10.1038/s41598-019-46942-x pmid: 31337788 |
[24] |
朱孔黎, 王艳萍, 宋海燕. CD47分子在抗肿瘤免疫中的应用[J]. 中国新药与临床杂志, 2020,39(6):335-341. DOI: 10.14109/j.cnki.xyylc.2020.06.03.
doi: 10.14109/j.cnki.xyylc.2020.06.03 |
[25] |
Nigro A, Ricciardi L, Salvato I, et al. Enhanced expression of CD47 is associated with off-target resistance to tyrosine kinase inhibitor gefitinib in NSCLC[J]. Front Immunol, 2020,10:3135. DOI: 10.3389/fimmu.2019.03135.
doi: 10.3389/fimmu.2019.03135 |
[26] |
王志宏, 罗龙龙, 彭晖. 靶向CD47抗体药物的研究进展[J]. 国际药学研究杂志, 2019,46(8):565-570. DOI: 10.13220/j.cnki.jipr.2019.08.001.
doi: 10.13220/j.cnki.jipr.2019.08.001 |
[27] |
Zhang H, Lu H, Xiang L, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells[J]. Proc Natl Acad Sci U S A, 2015,112(45):E6215-E6223. DOI: 10.1073/pnas.1520032112.
doi: 10.1073/pnas.1520032112 |
[28] |
Samanta D, Park Y, Ni X, et al. Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells[J]. Proc Natl Acad Sci U S A, 2018,115(6):E1239-E1248. DOI: 10.1073/pnas.1718197115.
doi: 10.1073/pnas.1718197115 |
[29] |
ElTanbouly MA, Schaafsma E, Noelle RJ, et al. VISTA: coming of age as a multi-lineage immune checkpoint[J]. Clin Exp Immunol, 2020,200(2):120-130. DOI: 10.1111/cei.13415.
doi: 10.1111/cei.13415 pmid: 31930484 |
[30] |
Johnston RJ, Su LJ, Pinckney J, et al. VISTA is an acidic pH-selective ligand for PSGL-1[J]. Nature, 2019,574(7779):565-570. DOI: 10.1038/s41586-019-1674-5.
doi: 10.1038/s41586-019-1674-5 |
[31] |
Blando J, Sharma A, Higa MG, et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2019,116(5):1692-1697. DOI: 10.1073/pnas.1811067116.
doi: 10.1073/pnas.1811067116 pmid: 30635425 |
[32] |
Liu J, Yuan Y, Chen W, et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses[J]. Proc Natl Acad Sci U S A, 2015,112(21):6682-6687. DOI: 10.1073/pnas.1420370112.
doi: 10.1073/pnas.1420370112 |
[33] |
Deng J, Li J, Sarde A, et al. Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment[J]. Cancer Immunol Res, 2019,7(7):1079-1090. DOI: 10.1158/2326-6066.CIR-18-0507.
doi: 10.1158/2326-6066.CIR-18-0507 pmid: 31088847 |
[34] |
赵桂增, 张晨光. 人类白细胞抗原G参与免疫调节研究进展[J]. 中国免疫学杂志, 2020,36(15):1913-1916. DOI: 10.3969/j.issn.1000-484X.2020.15.025.
doi: 10.3969/j.issn.1000-484X.2020.15.025 |
[35] |
Garziera M, Scarabel L, Toffoli G. Hypoxic modulation of HLA-G expression through the metabolic sensor HIF-1 in human cancer cells[J]. J Immunol Res, 2017,2017:4587520. DOI: 10.1155/2017/4587520.
doi: 10.1155/2017/4587520 pmid: 28781970 |
[36] |
Ziliotto M, Rodrigues RM, Chies JAB. Controlled hypobaric hypoxia increases immunological tolerance by modifying HLA-G expression, a potential therapy to inflammatory diseases[J]. Med Hypotheses, 2020,140:109664. DOI: 10.1016/j.mehy.2020.109664.
doi: S0306-9877(20)30052-9 pmid: 32155542 |
[37] |
Chen J, Cui B, Fan Y, et al. Protein kinase D1 regulates hypoxic metabolism through HIF-1α and glycolytic enzymes incancer cells[J]. Oncol Rep, 2018,40(2):1073-1082. DOI: 10.3892/or.2018.6479.
doi: 10.3892/or.2018.6479 |
[38] |
Halpin-Veszeleiova K, Hatfield SM. Oxygenation and A2AR bloc-kade to eliminate hypoxia/HIF-1α-adenosinergic immunosuppressive axis and improve cancer immunotherapy[J]. Curr Opin Pharmacol, 2020,53:84-90. DOI: 10.1016/j.coph.2020.07.005.
doi: S1471-4892(20)30043-6 pmid: 32841869 |
[39] |
Hatfield S, Veszeleiova K, Steingold J, et al. Mechanistic justifications of systemic therapeutic oxygenation of tumors to weaken the hypoxia inducible factor 1α-mediated Immunosuppression[J]. Adv Exp Med Biol, 2019,1136:113-121. DOI: 10.1007/978-3-030-12734-3_8.
doi: 10.1007/978-3-030-12734-3_8 pmid: 31201720 |
[1] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[2] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[3] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[4] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[5] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[6] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智. CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[7] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[8] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[9] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[10] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[11] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[12] | 崔腾璐, 吕璐, 孙鹏飞. 放疗联合免疫治疗在头颈部鳞状细胞癌治疗中的应用[J]. 国际肿瘤学杂志, 2023, 50(9): 548-552. |
[13] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏. 免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[14] | 邓隽军, 赵大勇, 李淼. 免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. |
[15] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||