国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (1): 61-64.doi: 10.3760/cma.j.cn371439-20200527-00012
• 综述 • 上一篇
收稿日期:
2020-05-27
修回日期:
2020-08-29
出版日期:
2021-01-08
发布日期:
2021-01-21
通讯作者:
曹莉莉
E-mail:cll@sdu.edu.cn
基金资助:
Received:
2020-05-27
Revised:
2020-08-29
Online:
2021-01-08
Published:
2021-01-21
Contact:
Cao Lili
E-mail:cll@sdu.edu.cn
Supported by:
摘要:
宫颈癌主动靶向纳米药物传输系统通过特定的配体-受体相互作用将载药纳米颗粒定向地运送到肿瘤细胞,具有减少药物不良反应、增强药物疗效等优点。了解常见的宫颈癌主动靶向纳米药物传输系统对探索新的载体、药物和作用靶点具有重要意义。
丁绪超, 曹莉莉. 常见的宫颈癌主动靶向纳米药物传输系统[J]. 国际肿瘤学杂志, 2021, 48(1): 61-64.
Ding Xuchao, Cao Lili. Common active targeting nano drug delivery systems for cervical cancer[J]. Journal of International Oncology, 2021, 48(1): 61-64.
[1] | 李雷, 吴鸣, 杨佳欣, 等. 卵巢上皮性癌和子宫颈癌患者铂类药物超敏反应的临床分析[J]. 中华妇产科杂志, 2016,51(11):825-831. DOI: 10.3760/cma.j.issn.0529-567X.2016.11.005. |
[2] |
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug deli-very, therapeutics, diagnostics and imaging[J]. Nanomedicine, 2012,8(2):147-166. DOI: 10.1016/j.nano.2011.05.016.
doi: 10.1016/j.nano.2011.05.016 pmid: 21703993 |
[3] |
Dockery L, Daniel MC. Dendronized systems for the delivery of chemotherapeutics[J]. Adv Cancer Res, 2018,139:85-120. DOI: 10.1016/bs.acr.2018.04.003.
doi: 10.1016/bs.acr.2018.04.003 pmid: 29941108 |
[4] |
Zhang R, Liu Q, Liao Q, et al. CD59: a promising target for tumor immunotherapy[J]. Future Oncol, 2018,14(8):781-791. DOI: 10.2217/fon-2017-0498.
pmid: 29521526 |
[5] | 高美华, 王冰, 王丽娜, 等. CD59基因突变与肿瘤免疫逃逸信号转导的相关性研究[C]. 第九届全国免疫学学术大会论文集, 2014. |
[6] |
Liu Q, Huang Y, Zhang R, et al. Medical application of spirulina platensis derived C-phycocyanin[J]. Evid Based Complement Alternat Med, 2016,2016:7803846. DOI: 10.1155/2016/7803846.
doi: 10.1155/2016/7803846 pmid: 27293463 |
[7] |
Yang P, Li B, Yin QF, et al. Carboxymethyl chitosan nanoparticles coupled with CD59-specific ligand peptide for targeted delivery of C-phycocyanin to HeLa cells[J]. Tumour Biol, 2017,39(3):1010428317692267. DOI: 10.1177/1010428317692267.
doi: 10.1177/1010428317692267 pmid: 28347253 |
[8] |
Jiang L, Wang Y, Zhu F, et al. Molecular mechanism of anti-cancer activity of the nano-drug C-PC/CMC-CD59sp NPs in cervical cancer[J]. J Cancer, 2019,10(1):92-104. DOI: 10.7150/jca.27462.
doi: 10.7150/jca.27462 pmid: 30662529 |
[9] |
Talekar M, Kendall J, Denny W, et al. Targeting of nanoparticles in cancer: drug delivery and diagnostics[J]. Anticancer Drugs, 2011,22(10):949-962. DOI: 10.1097/CAD.0b013e32834a4554.
pmid: 21970851 |
[10] |
Xu L, Bai Q, Zhang X, et al. Folate-mediated chemotherapy and diagnostics: an updated review and outlook[J]. J Control Release, 2017,252:73-82. DOI: 10.1016/j.jconrel.2017.02.023.
pmid: 28235591 |
[11] |
Wang X, Li D, Ghali L, et al. Therapeutic potential of delivering arsenic trioxide into HPV-infected cervical cancer cells using liposomal nanotechnology[J]. Nanoscale Res Lett, 2016,11(1):94. DOI: 10.1186/s11671-016-1307-y.
pmid: 26887578 |
[12] |
Pattni BS, Chupin VV, Torchilin VP. New developments in liposo-mal drug delivery[J]. Chem Rev, 2015,115(19):10938-10966. DOI: 10.1021/acs.chemrev.5b00046.
doi: 10.1021/acs.chemrev.5b00046 pmid: 26010257 |
[13] |
Akhtar A, Ghali L, Wang SX, et al. Optimisation of folate-mediated liposomal encapsulated arsenic trioxide for treating HPV-positive cervical cancer cells in vitro[J]. Int J Mol Sci, 2019,20(9):2156. DOI: 10.3390/ijms20092156.
doi: 10.3390/ijms20092156 |
[14] |
Ji J, Zuo P, Wang YL. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles[J]. Nanoscale Res Lett, 2015,10(1):453. DOI: 10.1186/s11671-015-1162-2.
doi: 10.1186/s11671-015-1162-2 pmid: 26608536 |
[15] |
You L, Liu X, Fang Z, et al. Synjournal of multifunctional Fe3O4@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer[J]. Mater Sci Eng C Mater Biol Appl, 2019,94:291-302. DOI: 10.1016/j.msec.2018.09.044.
doi: 10.1016/j.msec.2018.09.044 pmid: 30423711 |
[16] |
Zhang G, Liu F, Jia E, et al. Folate-modified, cisplatin-loaded li-pid carriers for cervical cancer chemotherapy[J]. Drug Deliv, 2016,23(4):1393-1397. DOI: 10.3109/10717544.2015.1054052.
pmid: 26165422 |
[17] |
Chen Y, Qu D, Fu R, et al. A Tf-modified tripterine-loaded coix seed oil microemulsion enhances anti-cervical cancer treatment[J]. Int J Nanomedicine, 2018,13:7275-7287. DOI: 10.2147/IJN.S182475.
pmid: 30510417 |
[18] |
Vithani K, Jannin V, Pouton CW, et al. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs[J]. Adv Drug Deliv Rev, 2019,142:16-34. DOI: 10.1016/j.addr.2019.01.008.
pmid: 30677448 |
[19] |
Yu J, Hsu CH, Huang CC, et al. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells[J]. ACS Appl Mater Interfaces, 2015,7(1):432-441. DOI: 10.1021/am5064298.
doi: 10.1021/am5064298 pmid: 25494339 |
[20] |
Liu T, Liu Y, Bao X, et al. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway[J]. PLoS One, 2013,8(9):e75864. DOI: 10.1371/journal.pone.0075864.
doi: 10.1371/journal.pone.0075864 pmid: 24086649 |
[21] |
Grabowska-Jadach I, Kalinowska D, Drozd M, et al. Synjournal, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy—new particles for theranostics[J]. Biomed Pharmacother, 2019,111:1147-1155. DOI: 10.1016/j.biopha.2019.01.037.
doi: 10.1016/j.biopha.2019.01.037 pmid: 30841428 |
[22] |
Liu T, Tian J, Chen Z, et al. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells[J]. Nanotechnology, 2014,25(34):345103. DOI: 10.1088/0957-4484/25/34/345103.
doi: 10.1088/0957-4484/25/34/345103 pmid: 25102337 |
[23] |
Akbarzadeh Khiavi M, Safary A, Barar J, et al. Multifunctional nanomedicines for targeting epidermal growth factor receptor in colo-rectal cancer[J]. Cell Mol Life Sci, 2020,77(6):997-1019. DOI: 10.1007/s00018-019-03305-z.
pmid: 31563999 |
[24] |
Zhou G, Wilson G, Hebbard L, et al. Aptamers: a promising che-mical antibody for cancer therapy[J]. Oncotarget, 2016,7(12):13446-13463. DOI: 10.18632/oncotarget.7178.
doi: 10.18632/oncotarget.7178 pmid: 26863567 |
[25] |
Chen Y, Wang J, Wang J, et al. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer[J]. J Biomed Nanotechnol, 2016,12(4):656-666. DOI: 10.1166/jbn.2016.2203.
doi: 10.1166/jbn.2016.2203 pmid: 27301192 |
[26] |
Maiti S, Paira P. Biotin conjugated organic molecules and proteins for cancer therapy: a review[J]. Eur J Med Chem, 2018,145:206-223. DOI: 10.1016/j.ejmech.2018.01.001.
doi: 10.1016/j.ejmech.2018.01.001 pmid: 29324341 |
[27] |
Wang F, Ma J, Wang KS, et al. Blockade of TNF-α-induced NF-κB signaling pathway and anti-cancer therapeutic response of dihydrotanshinone Ⅰ[J]. Int Immunopharmacol, 2015,28(1):764-772. DOI: 10.1016/j.intimp.2015.08.003.
doi: 10.1016/j.intimp.2015.08.003 pmid: 26283590 |
[28] |
Cai Y, Zhang W, Chen Z, et al. Recent insights into the biological activities and drug delivery systems of tanshinones[J]. Int J Nanomedicine, 2016,11:121-130. DOI: 10.2147/IJN.S84035.
pmid: 26792989 |
[29] |
Luo J, Meng X, Su J, et al. Biotin-modified polylactic- co-glycolic acid nanoparticles with improved antiproliferative activity of 15,16-dihydrotanshinone Ⅰ in human cervical cancer cells[J]. J Agric Food Chem, 2018,66(35):9219-9230. DOI: 10.1021/acs.jafc.8b02698.
doi: 10.1021/acs.jafc.8b02698 pmid: 30102527 |
[30] |
Vannini A, Leoni V, Barboni C, et al. αvβ3 -integrin regulates PD-L1 expression and is involved in cancer immune evasion[J]. Proc Natl Acad Sci U S A, 2019,116(40):20141-20150. DOI: 10.1073/pnas.1901931116.
pmid: 31527243 |
[31] |
Rohrbeck A, Holtje M, Adolf A, et al. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif[J]. J Biol Chem, 2017,292(43):17668-17680. DOI: 10.1074/jbc.M117.798231.
pmid: 28882889 |
[32] |
Yi Y, Kim HJ, Mi P, et al. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles[J]. J Control Release, 2016,244(Pt B):247-256. DOI: 10.1016/j.jconrel.2016.08.041.
doi: 10.1016/j.jconrel.2016.08.041 pmid: 27590214 |
[1] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 张宁宁, 杨哲, 檀丽梅, 李振宁, 王迪, 魏永志. 宫颈细胞DNA倍体分析联合B7-H4和PKCδ对宫颈癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(5): 286-291. |
[3] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[4] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[5] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[6] | 马正红, 姜超. 非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[7] | 黄辉, 丁江华. 靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573. |
[8] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[9] | 李开春, 丁昌利, 于文艳. 安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[10] | 陈秋, 王雷, 王明琦, 张梅. 恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[11] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[12] | 刘利, 朱思齐, 孙梦颖, 何敬东. PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[13] | 吕璐, 孙鹏飞. 肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. |
[14] | 刘博翰, 黄俊星. 溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
[15] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏. HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||