[1] |
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018,359(6382):1350-1355. DOI: 10.1126/science.aar4060.
doi: 10.1126/science.aar4060
pmid: 29567705
|
[2] |
Park YJ, Kuen DS, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance[J]. Exp Mol Med, 2018,50(8):109. DOI: 10.1038/s12276-018-0130-1.
doi: 10.1038/s12276-018-0130-1
pmid: 30135516
|
[3] |
Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015,373(17):1627-1639. DOI: 10.1056/NEJMoa1507643.
doi: 10.1056/NEJMoa1507643
pmid: 26412456
|
[4] |
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer[J]. N Engl J Med, 2015,373(2):123-135. DOI: 10.1056/NEJMoa1504627.
doi: 10.1056/NEJMoa1504627
pmid: 26028407
|
[5] |
Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomized controlled trial[J]. Lancet, 2016,387(10027):1540-1550. DOI: 10.1016/S0140-6736(15)01281-7.
doi: 10.1016/S0140-6736(15)01281-7
pmid: 26712084
|
[6] |
Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016,375(19):1823-1833. DOI: 10.1056/NEJMoa1606774.
doi: 10.1056/NEJMoa1606774
pmid: 27718847
|
[7] |
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicenter randomised controlled trial[J]. Lancet, 2017,389(10066):255-265. DOI: 10.1016/S0140-6736(16)32517-X.
doi: 10.1016/S0140-6736(16)32517-X
pmid: 27979383
|
[8] |
Hopkins AM, Rowland A, Kichenadasse G, et al. Predicting response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers[J]. Br J Cancer, 2017,117(7):913-920. DOI: 10.1038/bjc.2017.274.
doi: 10.1038/bjc.2017.274
pmid: 28950287
|
[9] |
Prelaj A, Tay R, Ferrara R, et al. Predictive biomarkers of response for immune checkpoint inhibitors in non-small-cell lung cancer[J]. Eur J Cancer, 2019,106:144-159. DOI: 10.1016/j.ejca.2018.11.002.
doi: 10.1016/j.ejca.2018.11.002
pmid: 30528799
|
[10] |
Peters S, Gettinger S, Johnson ML, et al. Phase Ⅱ trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH)[J]. J Clin Oncol, 2017,35(24):2781-2789. DOI: 10.1200/JCO.2016.71.9476.
doi: 10.1200/JCO.2016.71.9476
pmid: 28609226
|
[11] |
Spigel DR, Chaft JE, Gettinger S, et al. FIR: efficacy, safety, and biomarker analysis of a phase Ⅱ open-label study of atezolizumab in PD-L1-selected patients with NSCLC[J]. J Thorac Oncol, 2018,13(11):1733-1742. DOI: 10.1016/j.jtho.2018.05.004.
doi: 10.1016/j.jtho.2018.05.004
pmid: 29775807
|
[12] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011,144(5):646-674. DOI: 10.1016/j.cell.2011.02.013.
doi: 10.1016/j.cell.2011.02.013
|
[13] |
Zhu L, Li X, Shen Y, et al. A new prognostic score based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer[J]. Onco Targets Ther, 2016,9:4879-4886. DOI: 10.2147/OTT.S107279.
doi: 10.2147/OTT.S107279
pmid: 27540301
|
[14] |
Laird BJ, Fallon M, Hjermstad MJ, et al. Qualityof life in patients with advanced cancer: differential association with performance status and systemic inflammatory response[J]. J Clin Oncol, 2016,34(23):2769-2775. DOI: 10.1200/JCO.2015.65.7742.
doi: 10.1200/JCO.2015.65.7742
pmid: 27354484
|
[15] |
McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer[J]. Cancer Treat Rev, 2013,39(5):534-540. DOI: 10.1016/j.ctrv.2012.08.003.
doi: 10.1016/j.ctrv.2012.08.003
pmid: 22995477
|
[16] |
Mezquita L, Auclin E, Ferrara R, et al. Association of the Lung Immune Prognostic Index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer[J]. JAMA Oncol, 2018,4(3):351-357. DOI: 10.1001/jamaoncol.2017.4771.
doi: 10.1001/jamaoncol.2017.4771
pmid: 29327044
|
[17] |
Sorich MJ, Rowland A, Karapetis CS, et al. Evaluation of the lung immune prognostic index for prediction of survival and response in patients treated with atezolizumab for non-small cell lung cancer: pooled analysis of clinical trials[J]. J Thorac Oncol, 2019,14(8):1440-1446. DOI: 10.1016/j.jtho.2019.04.006.
doi: 10.1016/j.jtho.2019.04.006
pmid: 30999110
|
[18] |
Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial[J]. Lancet, 2016,387(10030):1837-1846. DOI: 10.1016/S0140-6736(16)00587-0.
doi: 10.1016/S0140-6736(16)00587-0
pmid: 26970723
|
[19] |
Kazandjian D, Gong Y, Keegan P, et al. Prognostic value of the lung immune prognostic index for patients treated for metastatic non-small-cell lung cancer[J]. JAMA Oncol, 2019,5(10):1481-1485. DOI: 10.1001/jamaoncol.2019.1747.
doi: 10.1001/jamaoncol.2019.1747
|
[20] |
Kim YJ, Kim CH, Lee SH, et al. Comprehensive clinical and genetic characterization of hyperprogression based on volumetry in advanced NSCLC treated with immune checkpoint inhibitor[J]. J Thorac Oncol, 2019,14(9):1608-1618. DOI: 10.1016/j.jtho.2019.05.033.
doi: 10.1016/j.jtho.2019.05.033
pmid: 31195179
|