[1] 刘再毅, 梁长虹. 促进影像组学的转化研究[J]. 中国医学影像技术, 2017, 33(12): 17651767. DOI: 10.13929/j.10033289.201711133.
[2] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563577. DOI: 10.1148/radiol.2015151169.
[3] Kuo MD, Jamshidi N. Behind the numbers: decoding molecular phenotypes with radiogenomicsguiding principles and technical considerations[J]. Radiology, 2014, 270(2): 320325. DOI: 10.1148/radiol.13132195.
[4] Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749762. DOI: 10.1038/nrclinonc.2017.141.
[5] Kamiya A, Murayama S, Kamiya H, et al. Kurtosis and skewness assessments of solid lung nodule density histograms: differentiating malignant from benign nodules on CT[J]. Jpn J Radiol, 2014, 32(1): 1421. DOI: 10.1007/s116040130264y.
[6] Wu W, Parmar C, Grossmann P, et al. Exploratory study to identify radiomics classifiers for lung cancer histology[J]. Front Oncol, 2016, 6: 71. DOI: 10.3389/fonc.2016.00071.
[7] Zhu X, Dong D, Chen Z, et al. Radiomic signature as a diagnostic factor for histologic subtype classification of nonsmall cell lung cancer[J]. Eur Radiol, 2018, 28(7): 27722778. DOI: 10.1007/s0033001752211.
[8] Hofmanninger J, Langs G. Mapping visual features to semantic profiles for retrieval in medical imaging[C]. Computer Vision and Pattern Recognition IEEE, 2015: 457465.
[9] Peikert T, Duan F, Rajagopalan S, et al. Novel highresolution computed tomographybased radiomic classifier for screenidentified pulmonary nodules in the National Lung Screening Trial[J]. PLoS One, 2018, 13(5): e0196910. DOI: 10.1371/journal.pone.0196910.
[10] Tu SJ, Wang CW, Pan KT, et al. Localized thinsection CT with radiomics feature extraction and machine learning to classify earlydetected pulmonary nodules from lung cancer screening[J]. Phys Med Biol, 2018, 63(6): 065005. DOI: 10.1088/13616560/aaafab.
[11] Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in lowdose CT for early detection of lung cancer[J]. Med Phys, 2018, 45(4): 15371549. DOI: 10.1002/mp.12820.
[12] Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017, 7: 41674. DOI: 10.1038/srep41674.
[13] Sacconi B, Anzidei M, Leonardi A, et al. Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates[J]. Clin Radiol, 2017, 72(6): 443450. DOI: 10.1016/j.crad.2017.01.015.
[14] Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017, 77(14): 39223930. DOI: 10.1158/00085472.CAN170122.
[15] Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characterization of EGFR, KRAS, and ALK mutations in nonsmall cell lung cancer[J]. Eur Radiol, 2016, 26(1): 3242. DOI: 10.1007/s0033001538140.
[16] Zhou JY, Zheng J, Yu ZF, et al. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or EGFR mutations[J]. Eur Radiol, 2015, 25(5): 12571266. DOI: 10.1007/s003300143516z.
[17] Kim TJ, Lee CT, Jheon SH, et al. Radiologic characteristics of surgically resected nonsmall cell lung cancer with ALK rearrangement or EGFR mutations[J]. Ann Thorac Surg, 2016, 101(2): 473480. DOI: 10.1016/j.athoracsur.2015.07.062.
[18] Wang H, Schabath MB, Liu Y, et al. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations[J]. Eur J Radiol, 2016, 85(11): 19341940. DOI: 10.1016/j.ejrad.2016.08.023.
[19] Choi CM, Kim MY, Hwang HJ, et al. Advanced adenocarcinoma of the lung: comparison of CT characteristics of patients with anaplastic lymphoma kinase gene rearrangement and those with epidermal growth factor receptor mutation[J]. Radiology, 2015, 275(1): 272279. DOI: 10.1148/radiol.14140848.
[20] Plodkowski AJ, Drilon A, Halpenny DF, et al. From genotype to phenotype: are there imaging characteristics associated with lung adenocarcinomas harboring RET and ROS1 rearrangements?[J]. Lung Cancer, 2015, 90(2): 321325. DOI: 10.1016/j.lungcan.2015.09.018.
[21] Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015, 94(41): e1753. DOI: 10.1097/MD.0000000000001753.
[22] Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC[J]. Sci Rep, 2016, 6: 33860. DOI: 10.1038/srep33860.
[23] Huynh E, Coroller TP, Narayan V, et al. CTbased radiomic analysis of stereotactic body radiation therapy patients with lung cancer[J]. Radiother Oncol, 2016, 120(2): 258266. DOI: 10.1016/j.radonc.2016.05.024.
[24] Takeda K, Takanami K, Shirata Y, et al. Clinical utility of texture analysis of 18FFDG PET/CT in patients with stage Ⅰ lung cancer treated with stereotactic body radiotherapy[J]. J Radiat Res, 2017, 58(6): 862869. DOI: 10.1093/jrr/rrx050.
[25] Coroller TP, Agrawal V, Narayan V, et al. Radiomic phenotype features predict pathological response in nonsmall cell lung cancer[J]. Radiother Oncol, 2016, 119(3): 480486. DOI: 10.1016/j.radonc.2016.04.004.
[26] Coroller TP, Agrawal V, Huynh E, et al. Radiomicbased pathological response prediction from primary tumors and lymph nodes in NSCLC[J]. J Thorac Oncol, 2017, 12(3): 467476. DOI: 10.1016/j.jtho.2016.11.2226.
[27] Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma[J]. PLoS One, 2015, 10(3): e0118261. DOI: 10.1371/journal.pone.0118261.
[28] Song J, Liu Z, Zhong W, et al. Nonsmall cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis[J]. Sci Rep, 2016, 6: 38282. DOI: 10.1038/srep38282.
[29] Fried DV, Tucker SL, Zhou S, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage Ⅲ nonsmall cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2014, 90(4): 834842. DOI: 10.1016/j.ijrobp.2014.07.020.
[30] Huang Y, Liu Z, He L, et al. Radiomics signature: a potential biomarker for the prediction of diseasefree survival in earlystage (Ⅰ or Ⅱ) nonsmall cell lung cancer[J]. Radiology, 2016, 281(3): 947957. DOI: 10.1148/radiol.2016152234.
[31] Depeursinge A, Yanagawa M, Leung AN, et al. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT[J]. Med Phys, 2015, 42(4): 20542063. DOI: 10.1118/1.4916088.
[32] Zhao B, Tan Y, Tsai WY, et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging[J]. Sci Rep, 2016, 6: 23428. DOI: 10.1038/srep23428.
[33] He L, Huang Y, Ma Z, et al. Effects of contrastenhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule[J]. Sci Rep, 2016, 6: 34921. DOI: 10.1038/srep34921.
[34] Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with nonsmall cell lung cancer?[J]. Med Phys, 2015, 42(12): 67846797. DOI: 10.1118/1.4934826. |