
国际肿瘤学杂志 ›› 2026, Vol. 53 ›› Issue (3): 182-186.doi: 10.3760/cma.j.cn371439-20250919-00030
收稿日期:2025-09-19
出版日期:2026-03-08
发布日期:2026-02-09
通讯作者:
关泉林,Email: guanql@lzu.edu.cn
Ma Zhuaxiji1, Min Xiyun1, Guan Quanlin2(
)
Received:2025-09-19
Online:2026-03-08
Published:2026-02-09
摘要:
胃癌冷肿瘤因T细胞浸润不足导致免疫逃逸阻碍了免疫治疗在胃癌中的广泛应用。明确冷、热肿瘤的生物学特征差异及胃癌分子分型与免疫表型的关联,有助于了解冷肿瘤向热肿瘤转化的核心机制,包括增强抗原呈递、促进免疫细胞浸润与活化、逆转免疫抑制微环境。临床转化方面包括免疫治疗、联合治疗及新型免疫疗法等,此外微生物组调控与运动或为增效的新方向。未来需基于多组学分层开发联合策略,以实现冷肿瘤精准转化、克服耐药,从而改善患者预后。
马抓喜吉, 闵希赟, 关泉林. 胃癌冷肿瘤向热肿瘤转化的免疫重塑策略与临床进展[J]. 国际肿瘤学杂志, 2026, 53(3): 182-186.
Ma Zhuaxiji, Min Xiyun, Guan Quanlin. Immune remodeling strategies and clinical progress of the transformation of gastric cold tumors into hot tumors[J]. Journal of International Oncology, 2026, 53(3): 182-186.
| [1] |
Thrift AP, Wenker TN, El-Serag HB. Global burden of gastric cancer: epidemiological trends, risk factors, screening and prevention[J]. Nat Rev Clin Oncol, 2023, 20(5): 338-349. DOI: 10.1038/s41571-023-00747-0.
pmid: 36959359 |
| [2] |
Lv C, Chen T, Li J, et al. A comprehensive analysis of molecular characteristics of hot and cold tumor of gastric cancer[J]. Cancer Immunol Immunother, 2025, 74(3): 102. DOI: 10.1007/s00262-025-03954-z.
pmid: 39904894 |
| [3] |
Wu LW, Jang SJ, Shapiro C, et al. Diffuse gastric cancer: a comprehensive review of molecular features and emerging therapeutics[J]. Target Oncol, 2024, 19(6): 845-865. DOI: 10.1007/s11523-024-01097-2.
pmid: 39271577 |
| [4] | Bou-Dargham MJ, Sha L, Sarker DB, et al. TCGA RNA-Seq and tumor-infiltrating lymphocyte imaging data reveal cold tumor signatures of invasive ductal carcinomas and estrogen receptor-positive human breast tumors[J]. Int J Mol Sci, 2023, 24(11): 9355. DOI: 10.3390/ijms24119355. |
| [5] | Wu B, Zhang B, Li B, et al. Cold and hot tumors: from molecular mechanisms to targeted therapy[J]. Signal Transduct Target Ther, 2024, 9(1): 274. DOI: 10.1038/s41392-024-01979-x. |
| [6] | Sang M, Ge J, Ge J, et al. Immune regulatory genes impact the hot/cold tumor microenvironment, affecting cancer treatment and patient outcomes[J]. Front Immunol, 2024, 15: 1382842. DOI: 10.3389/fimmu.2024.1382842. |
| [7] |
Derks S, de Klerk LK, Xu X, et al. Characterizing diversity in the tumor-immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas[J]. Ann Oncol, 2020, 31(8): 1011-1020. DOI: 10.1016/j.annonc.2020.04.011.
pmid: 32387455 |
| [8] |
Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes[J]. Nat Med, 2015, 21(5): 449-456. DOI: 10.1038/nm.3850.
pmid: 25894828 |
| [9] | Qiu MZ, He CY, Lu SX, et al. Prospective observation: clinical utility of plasma epstein-barr virus DNA load in EBV-associated gastric carcinoma patients[J]. Int J Cancer, 2020, 146(1): 272-280. DOI: 10.1002/ijc.32490. |
| [10] | Puliga E, Corso S, Pietrantonio F, et al. Microsatellite instability in gastric cancer: between lights and shadows[J]. Cancer Treat Rev, 2021, 95: 102175. DOI: 10.1016/j.ctrv.2021.102175. |
| [11] | Pietrantonio F, Randon G, Di Bartolomeo M, et al. Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: a meta-analysis of randomized clinical trials[J]. ESMO Open, 2021, 6(1): 100036. DOI: 10.1016/j.esmoop.2020.100036. |
| [12] | Alsina M, Arrazubi V, Diez M, et al. Current developments in gastric cancer: from molecular profiling to treatment strategy[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(3): 155-170. DOI: 10.1038/s41575-022-00703-w. |
| [13] |
Ippolito MR, Martis V, Martin S, et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy[J]. Dev Cell, 2021, 56(17): 2440-2454.e6. DOI: 10.1016/j.devcel.2021.07.006.
pmid: 34352223 |
| [14] |
Shi D, Yang Z, Cai Y, et al. Research advances in the molecular classification of gastric cancer[J]. Cell Oncol (Dordr), 2024, 47(5): 1523-1536. DOI: 10.1007/s13402-024-00951-9.
pmid: 38717722 |
| [15] |
Wang Q, Xie Q, Liu Y, et al. Clinical characteristics and prognostic significance of TCGA and ACRG classification in gastric cancer among the Chinese population[J]. Mol Med Rep, 2020, 22(2): 828-840. DOI: 10.3892/mmr.2020.11183.
pmid: 32468041 |
| [16] |
Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing[J]. Annu Rev Immunol, 2013, 31: 443-473. DOI: 10.1146/annurev-immunol-032712-095910.
pmid: 23298205 |
| [17] | Fan T, Zhang M, Yang J, et al. Therapeutic cancer vaccines: advancements, challenges, and prospects[J]. Signal Transduct Target Ther, 2023, 8(1): 450. DOI: 10.1038/s41392-023-01674-3. |
| [18] | Kim BJ, Abdelfattah NS, Hostetler A, et al. Progress in cancer vaccines enabled by nanotechnology[J]. Nat Nanotechnol, 2025, 20(11): 1558-1572. DOI: 10.1038/s41565-025-02021-z. |
| [19] |
Zhang B, Wu Q, Li B, et al. m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53. DOI: 10.1186/s12943-020-01170-0.
pmid: 32164750 |
| [20] |
McLaughlin M, Patin EC, Pedersen M, et al. Inflammatory micro-environment remodelling by tumour cells after radiotherapy[J]. Nat Rev Cancer, 2020, 20(4): 203-217. DOI: 10.1038/s41568-020-0246-1.
pmid: 32161398 |
| [21] | Lu H, Lou H, Wengert G, et al. Tumor and local lymphoid tissue interaction determines prognosis in high-grade serous ovarian cancer[J]. Cell Rep Med, 2023, 4(7): 101092. DOI: 10.1016/j.xcrm.2023.101092. |
| [22] |
Deng R, Zhang P, Liu W, et al. HDAC is indispensable for IFN-γ- induced B7-H1 expression in gastric cancer[J]. Clin Epigenetics, 2018, 10(1): 153. DOI: 10.1186/s13148-018-0589-6.
pmid: 30537988 |
| [23] | Ming ZH, Zhang YQ, Song L, et al. Rare earth nanoprobes for targeted delineation of triple negative breast cancer and enhancement of radioimmunotherapy[J]. Adv Sci, 2024, 11(29): e2309992. DOI: 10.1002/advs.202309992. |
| [24] | Cao W, Chen J, Fu Y, et al. A next-generation anti-CTLA-4 probody mitigates toxicity and enhances anti-tumor immunity in mice[J]. Nat Commun, 2025, 16(1): 9029. DOI: 10.1038/s41467-025-64081-y. |
| [25] |
Li X, Geng S, Chen Q, et al. Disrupting tumor lactate homeostasis to sensitize chemo-immunotherapy using a glucose-disguised lactate interceptor[J]. ACS Nano, 2025, 19(23): 21556-21570. DOI: 10.1021/acsnano.5c03545.
pmid: 40472333 |
| [26] | Weber R, Riester Z, Hüser L, et al. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma[J]. J Immunother Cancer, 2020, 8(2): e000949. DOI: 10.1136/jitc-2020-000949. |
| [27] | Papait A, Romoli J, Stefani FR, et al. Fight the cancer, hit the CAF![J]. Cancers (Basel), 2022, 14(15): 3570. DOI: 10.3390/cancers14153570. |
| [28] | Zhu B, Cheng L, Huang B, et al. Central role of hypoxia-inducible factor-1α in metabolic reprogramming of cancer cells: a review[J]. Medicine (Baltimore), 2024, 103(44): e40273. DOI: 10.1097/MD.0000000000040273. |
| [29] | Zhou L, Zhang W, Hu X, et al. Metabolic reprogramming of cancer-associated fibroblast in the tumor microenvironment: from basics to clinic[J]. Clin Med Insights Oncol, 2024, 18: 11795549241287058. DOI: 10.1177/11795549241287058. |
| [30] | Zhou K, Hu N, Hong Y, et al. An immune-related prognostic signature predicts overall survival in stomach adenocarcinomas[J]. Front Genet, 2022, 13: 903393. DOI: 10.3389/fgene.2022.903393. |
| [31] | Chang X, Ge X, Zhang Y, et al. The current management and biomarkers of immunotherapy in advanced gastric cancer[J]. Medicine (Baltimore), 2022, 101(21): e29304. DOI: 10.1097/MD.0000000000029304. |
| [32] | Gao X, Ji K, Jia Y, et al. Cadonilimab with chemotherapy in HER2-negative gastric or gastroesophageal junction adenocarcinoma: the phase 1b/2 COMPASSION-04 trial[J]. Nat Med, 2024, 30(7): 1943-1951. DOI: 10.1038/s41591-024-03007-5. |
| [33] | Gao J, Wang Z, Jiang W, et al. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation[J]. J Immunother Cancer, 2023, 11(6): e006704. DOI: 10.1136/jitc-2023-006704. |
| [34] | Ferreira CS, Babitzki G, Klaman I, et al. Predictive potential of angiopoietin-2 in a mCRC subpopulation treated with vanucizumab in the McCAVE trial[J]. Front Oncol, 2023, 13: 1157596. DOI: 10.3389/fonc.2023.1157596. |
| [35] | Christodoulidis G, Koumarelas KE, Kouliou MN. Revolutionizing gastric cancer treatment: the potential of immunotherapy[J]. World J Gastroenterol, 2024, 30(4): 286-289. DOI: 10.3748/wjg.v30.i4.286. |
| [36] |
Zhu G, Foletti D, Liu X, et al. Author correction: targeting CLDN18.2 by CD3 bispecific and ADC modalities for the treatments of gastric and pancreatic cancer[J]. Sci Rep, 2019, 9(1): 16735. DOI: 10.1038/s41598-019-53130-4.
pmid: 31700121 |
| [37] | Akeso. A study of mRNA vaccines AK154 monotherapy or in combination with AK104/AK112, and sequential mFOLFIRINOX in surgically resected PDAC[EB/OL]. (2025-04-06)[2025-07-25]. https://clinicaltrials.gov/study/NCT06913218. |
| [38] | Starzer AM, Preusser M, Berghoff AS. Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle[J]. Ther Adv Med Oncol, 2022, 14: 17588359221096219. DOI: 10.1177/17588359221096219. |
| [39] |
Lin Y, Jing X, Chen Z, et al. Histone deacetylase-mediated tumor microenvironment characteristics and synergistic immunotherapy in gastric cancer[J]. Theranostics, 2023, 13(13): 4574-4600. DOI: 10.7150/thno.86928.
pmid: 37649598 |
| [40] | Wei X, Liu J, Cheng J, et al. Super-enhancer-driven ZFP36L1 promotes PD-L1 expression in infiltrative gastric cancer[J]. Elife, 2024, 13: RP96445. DOI: 10.7554/eLife.96445. |
| [41] | Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy[J]. Int J Mol Sci, 2020, 21(9): 3233. DOI: 10.3390/ijms21093233. |
| [42] | Liu J, Yuan Q, Guo H, et al. Deciphering drug resistance in gastric cancer: potential mechanisms and future perspectives[J]. Biomed Pharmacother, 2024, 173: 116310. DOI: 10.1016/j.biopha.2024.116310. |
| [43] | Gao YX, Guo XJ, Lin B, et al. Targeting LHPP in neoadjuvant chemotherapy resistance of gastric cancer: insights from single-cell and multi-omics data on tumor immune microenvironment and stemness characteristics[J]. Cell Death Dis, 2025, 16(1): 306. DOI: 10.1038/s41419-025-07614-z. |
| [44] | Lin JX, Lian NZ, Gao YX, et al. m6A methylation mediates LHPP acetylation as a tumour aerobic glycolysis suppressor to improve the prognosis of gastric cancer[J]. Cell Death Dis, 2022, 13(5): 463. DOI: 10.1038/s41419-022-04859-w. |
| [45] |
Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research[J]. Public Health Rep, 1985, 100(2): 126-131.
pmid: 3920711 |
| [46] | Gustafson MP, Wheatley-Guy CM, Rosenthal AC, et al. Exercise and the immune system: taking steps to improve responses to cancer immunotherapy[J]. J Immunother Cancer, 2021, 9(7): e001872. DOI: 10.1136/jitc-2020-001872. |
| [47] |
Pedersen L, Idorn M, Olofsson GH, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution[J]. Cell Metab, 2016, 23(3): 554-562. DOI: 10.1016/j.cmet.2016.01.011.
pmid: 26895752 |
| [48] | Hapuarachi B, Danson S, Wadsley J, et al. Exercise to transform tumours from cold to hot and improve immunotherapy responsiveness[J]. Front Immunol, 2023, 14: 1335256. DOI: 10.3389/fimmu.2023.1335256. |
| [49] | Wang M, Yang G, Tian Y, et al. The role of the gut microbiota in gastric cancer: the immunoregulation and immunotherapy[J]. Front Immunol, 2023, 14: 1183331. DOI: 10.3389/fimmu.2023.1183331. |
| [1] | 屈振杰, 崔琴. lncRNA FGD5-AS1/miR-154-5p/WNT5A信号通路调控紫杉醇耐药胃癌细胞的增殖和转移机制研究[J]. 国际肿瘤学杂志, 2026, 53(3): 137-143. |
| [2] | 塔娜, 韩芸, 龙锐, 胡军. 局部进展期胃癌患者APO及ILF表达谱特征对手术预后的影响[J]. 国际肿瘤学杂志, 2026, 53(3): 150-156. |
| [3] | 施锐, 代键, 陈冉, 胡丽丽. 虫草素调节Akt/GSK-3β/Snail信号通路对鼻咽癌细胞增殖、凋亡和上皮间质转化的影响[J]. 国际肿瘤学杂志, 2026, 53(2): 65-72. |
| [4] | 来比江·吾斯曼, 宋钉町, 张文斌. SPART通过脂噬对胃癌细胞增殖和迁移能力的影响[J]. 国际肿瘤学杂志, 2026, 53(2): 73-78. |
| [5] | 阿里亚·艾海提, 努力满·赛麦特, 王婷婷. 胃癌根治术后患者营养状况与术前胃形态和功能特征的相关性分析[J]. 国际肿瘤学杂志, 2026, 53(2): 87-92. |
| [6] | 王雨, 李袁飞, 郭云童. 免疫评分系统在胃癌中的研究进展[J]. 国际肿瘤学杂志, 2026, 53(1): 62-64. |
| [7] | 刘美, 胡玉崇, 李凤桐, 朝乐门, 柳檬, 亢琳琳. SHCBP1在恶性肿瘤中的作用机制及临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(9): 583-586. |
| [8] | 李广鑫, 权慧娟, 高志娟, 王肖君, 李良, 董谦, 苗永涛, 刘东生. 血清HAMP、SPP1、RGS2水平与胃癌患者临床病理特征的相关性及对术后复发或转移的预测价值[J]. 国际肿瘤学杂志, 2025, 52(8): 502-507. |
| [9] | 王旻, 温馨格, 魏毓正, 孙诚诚, 周婷婷. 纳武利尤单抗联合化疗治疗胃癌假性进展1例并文献复习[J]. 国际肿瘤学杂志, 2025, 52(6): 395-397. |
| [10] | 刘前怡, 董洪敏, 王文玲, 王刚, 陈望花. 放疗联合化疗和免疫治疗对HER2阴性局部晚期或晚期胃癌的临床疗效和安全性[J]. 国际肿瘤学杂志, 2025, 52(4): 209-216. |
| [11] | . 胃癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(2): 65-66. |
| [12] | 姬海涛, 王延峰, 刘永成, 郝楠. 基于生物信息学分析DHCR7在胃癌中的表达及临床意义[J]. 国际肿瘤学杂志, 2025, 52(2): 94-100. |
| [13] | 刘萍萍, 王俊毅, 林志伟, 陈大朝. 胃癌术后腹膜转移患者预后的影响因素分析[J]. 国际肿瘤学杂志, 2025, 52(12): 764-769. |
| [14] | 章帅, 刘靓靓, 黄迪, 盛茹, 齐梦瑶, 李曙光. circRNA-15430靶向miR-10对胃癌细胞增殖及侵袭的影响[J]. 国际肿瘤学杂志, 2025, 52(11): 673-679. |
| [15] | 谭荣坚, 欧雯婷, 翟嘉伟, 全祯豪, 孙利君, 周才进. RRM2通过调控CDK1对胃癌细胞恶性生物学行为及有氧糖酵解的影响[J]. 国际肿瘤学杂志, 2025, 52(1): 23-30. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||