| [1] |
Kuderer NM, Desai A, Lustberg MB, et al. Mitigating acute chemo-therapy-associated adverse events in patients with cancer[J]. Nat Rev Clin Oncol, 2022, 19(11): 681-697. DOI: 10.1038/s41571-022-00685-3.
pmid: 36221000
|
| [2] |
Romero D. Benefit with adjuvant metronomic capecitabine in NPC[J]. Nat Rev Clin Oncol, 2021, 18(9): 542. DOI: 10.1038/s41571-021-00536-7.
pmid: 34155394
|
| [3] |
Roosendaal J, Jacobs BAW, Pluim D, et al. Phase Ⅰ pharmacological study of continuous chronomodulated capecitabine treatment[J]. Pharm Res, 2020, 37(5): 89. DOI: 10.1007/s11095-020-02828-6.
|
| [4] |
Del Mastro L, Poggio F, Blondeaux E, et al. Fluorouracil and dose-dense adjuvant chemotherapy in patients with early-stage breast cancer (GIM2): end-of-study results from a randomised, phase 3 trial[J]. Lancet Oncol, 2022, 23(12): 1571-1582. DOI: 10.1016/S1470-2045(22)00632-5.
|
| [5] |
Claessens AKM, Erdkamp FLG, Lopez-Yurda M, et al. Secondary analyses of the randomized phase Ⅲ stop&go study: efficacy of second-line intermittent versus continuous chemotherapy in HER2-negative advanced breast cancer[J]. Acta Oncol, 2020, 59(6): 713-722. DOI: 10.1080/0284186X.2020.1731923.
pmid: 32141389
|
| [6] |
张百红, 岳红云. 肿瘤化疗药物10年[J]. 现代肿瘤医学, 2019, 27(1): 175-179. DOI: 10.3969/j.issn.1672-4992.2019.01.044.
|
| [7] |
Nikanjam M, Kato S, Allen T, et al. Novel clinical trial designs emerging from the molecular reclassification of cancer[J]. CA Cancer J Clin, 2025, 75(3): 243-267. DOI: 10.3322/caac.21880.
|
| [8] |
张百红, 岳红云. 肿瘤的精准化疗[J]. 国际肿瘤学杂志, 2017, 44(2): 133-135. DOI: 10.3760/cma.j.issn.1673-422X.2017.02.014.
|
| [9] |
Veneziani AC, Gonzalez-Ochoa E, Alqaisi H, et al. Heterogeneity and treatment landscape of ovarian carcinoma[J]. Nat Rev Clin Oncol, 2023, 20(12): 820-842. DOI: 10.1038/s41571-023-00819-1.
pmid: 37783747
|
| [10] |
Yang L, Yang J, Kleppe A, et al. Personalizing adjuvant therapy for patients with colorectal cancer[J]. Nat Rev Clin Oncol, 2024, 21(1): 67-79. DOI: 10.1038/s41571-023-00834-2.
|
| [11] |
Trepka KR, Kidder WA, Kyaw TS, et al. Expansion of a bacterial operon during cancer treatment ameliorates fluoropyrimidine toxicity[J]. Sci Transl Med, 2025, 17(794): eadq8870. DOI: 10.1126/scitranslmed.adq8870.
|
| [12] |
Menghi F, Banda K, Kumar P, et al. Genomic and epigenomic BRCA alterations predict adaptive resistance and response to platinum-based therapy in patients with triple-negative breast and ovarian carcinomas[J]. Sci Transl Med, 2022, 14(652): eabn1926. DOI: 10.1126/scitranslmed.abn1926.
|
| [13] |
Coussy F, El-Botty R, Château-Joubert S, et al. BRCAness, SLFN11, and RB1 loss predict response to topoisomerase Ⅰ inhibitors in triple-negative breast cancers[J]. Sci Transl Med, 2020, 12(531): eaax2625. DOI: 10.1126/scitranslmed.aax2625.
|
| [14] |
Tseng YH, Tran TTM, Tsai Chang J, et al. Utilizing TP53 hotspot mutations as effective predictors of gemcitabine treatment outcome in non-small-cell lung cancer[J]. Cell Death Discov, 2025, 11(1): 26. DOI: 10.1038/s41420-025-02300-7.
|
| [15] |
Jiang TY, Cui XW, Zeng TM, et al. PTEN deficiency facilitates gemcitabine efficacy in cancer by modulating the phosphorylation of PP2Ac and DCK[J]. Sci Transl Med, 2023, 15(704): eadd7464. DOI: 10.1126/scitranslmed.add7464.
|
| [16] |
Kalinsky K, Barlow WE, Gralow JR, et al. 21-gene assay to inform chemotherapy benefit in node-positive breast cancer[J]. N Engl J Med, 2021, 385(25): 2336-2347. DOI: 10.1056/NEJMoa2108873.
|
| [17] |
Rodrigues-Ferreira S, Nehlig A, Moindjie H, et al. Improving breast cancer sensitivity to paclitaxel by increasing aneuploidy[J]. Proc Natl Acad Sci U S A, 2019, 116(47): 23691-23697. DOI: 10.1073/pnas.1910824116.
|
| [18] |
Rodriguez H, Zenklusen JC, Staudt LM, et al. The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment[J]. Cell, 2021, 184(7): 1661-1670. DOI: 10.1016/j.cell.2021.02.055.
pmid: 33798439
|
| [19] |
张百红, 岳红云. 纳米医学在肿瘤治疗中的应用进展[J]. 实用肿瘤杂志, 2023, 38(2): 179-183. DOI:10.13267/j.cnki.syzlzz.2023.028.
|
| [20] |
Moles E, Kavallaris M. A potent targeted cancer nanotherapeutic[J]. Nat Biomed Eng, 2019, 3(4): 248-250. DOI: 10.1038/s41551-019-0390-7.
pmid: 30952987
|
| [21] |
Guo S, Vieweger M, Zhang K, et al. Ultra-thermostable RNA nano-particles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy[J]. Nat Commun, 2020, 11(1): 972. DOI: 10.1038/s41467-020-14780-5.
|
| [22] |
Shen S, Xu X, Lin S, et al. A nanotherapeutic strategy to of cancer stem-like cells[J]. Nat Nanotechnol, 2021, 16(1): 104-113. DOI: 10.1038/s41565-020-00793-0.
|
| [23] |
Abbas A, Mundaca-Uribe R, Zhang L, et al. Robotic micromotors transforming oral drug administration[J]. Trends Biotechnol, 2025, 43(9): 2197-2213. DOI: 10.1016/j.tibtech.2025.03.011.
|
| [24] |
Zhang F, Li Z, Chen C, et al. Biohybrid microalgae robots: design, fabrication, materials, and applications[J]. Adv Mater, 2024, 36(3): e2303714. DOI: 10.1002/adma.202303714.
|
| [25] |
Regeni I, Bonnet S. Supramolecular approaches for the treatment of hypoxic regions in tumours[J]. Nat Rev Chem, 2025, 9(6): 365-377. DOI: 10.1038/s41570-025-00705-7.
pmid: 40185999
|
| [26] |
张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. DOI: 10.3760/cma.j.cn371439-20240318-00061.
|
| [27] |
Tarantino P, Carmagnani Pestana R, Corti C, et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies[J]. CA Cancer J Clin, 2022, 72(2): 165-182. DOI: 10.3322/caac.21705.
|
| [28] |
Tarantino P, Ricciuti B, Pradhan SM, et al. Optimizing the safety of antibody-drug conjugates for patients with solid tumours[J]. Nat Rev Clin Oncol, 2023, 20(8): 558-576. DOI: 10.1038/s41571-023-00783-w.
pmid: 37296177
|
| [29] |
Tsuchikama K, Anami Y, Ha SYY, et al. Exploring the next generation of antibody-drug conjugates[J]. Nat Rev Clin Oncol, 2024, 21(3): 203-223. DOI: 10.1038/s41571-023-00850-2.
pmid: 38191923
|
| [30] |
Blanchard Z, Brown EA, Ghazaryan A, et al. PDX models for functional precision oncology and discovery science[J]. Nat Rev Cancer, 2025, 25(3): 153-166. DOI: 10.1038/s41568-024-00779-3.
pmid: 39681638
|
| [31] |
Na D, Chae J, Cho SY, et al. Predictive biomarkers for 5-fluorouracil and oxaliplatin-based chemotherapy in gastric cancers via profiling of patient-derived xenografts[J]. Nat Commun, 2021, 12(1): 4840. DOI: 10.1038/s41467-021-25122-4.
pmid: 34376661
|
| [32] |
Yin S, Xi R, Wu A, et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy[J]. Sci Transl Med, 2020, 12(549): eaaz1723. DOI: 10.1126/scitranslmed.aaz1723.
|
| [33] |
Akhoundova D, Rubin MA. Clinical application of advanced multio-mics tumor profiling: shaping precision oncology of the future[J]. Cancer Cell, 2022, 40(9): 920-938. DOI: 10.1016/j.ccell.2022.08.011.
pmid: 36055231
|
| [34] |
Montagut C, Vidal J. Liquid biopsy for precision adjuvant chemotherapy in colon cancer[J]. N Engl J Med, 2022, 386(24): 2330-2331. DOI: 10.1056/NEJMe2204625.
|
| [35] |
Alix-Panabières C, Pantel K. Advances in liquid biopsy: from exploration to practical application[J]. Cancer Cell, 2025, 43(2): 161-165. DOI: 10.1016/j.ccell.2024.11.009.
pmid: 39672165
|
| [36] |
Corsi M, Maurina E, Surdo S, et al. In vivo and in situ monitoring of doxorubicin pharmacokinetics with an implantable bioresorbable optical sensor[J]. Sci Adv, 2025, 11(16): eads0265. DOI: 10.1126/sciadv.ads0265.
|
| [37] |
Soragni A, Knudsen ES, O'Connor TN, et al. Acquired resistance in cancer: towards targeted therapeutic strategies[J]. Nat Rev Cancer, 2025, 25(8): 613-633. DOI: 10.1038/s41568-025-00824-9.
pmid: 40461793
|
| [38] |
Yates J, Van Allen EM. New horizons at the interface of artificial intelligence and translational cancer research[J]. Cancer Cell, 2025, 43(4): 708-727. DOI: 10.1016/j.ccell.2025.03.018.
pmid: 40233719
|
| [39] |
Luo J, Solit DB. Leveraging real-world data to advance biomarker discovery and precision oncology[J]. Cancer Cell, 2025, 43(4): 606-610. DOI: 10.1016/j.ccell.2025.03.012.
|