| [1] |
Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, et al. Radiation-induced lung injury: current evidence[J]. BMC Pulm Med, 2021, 21(1): 9. DOI: 10.1186/s12890-020-01376-4.
|
| [2] |
Konkol M, Śniatała P, Milecki P. Radiation-induced lung injury—what do we know in the era of modern radiotherapy[J]. Rep Pract Oncol Radiother, 2022, 27(3): 552-565. DOI: 10.5603/RPOR.a2022.0046.
|
| [3] |
黄波, 汪鹏. 血清sCD163、IFN-γ联合TGF-β1对NSCLC患者放疗后发生放射性肺炎的早期预测价值[J]. 国际肿瘤学杂志, 2024, 51(9): 563-568. DOI: 10.3760/cma.j.cn371439-20240318-00094.
|
| [4] |
Zou G, Li L, Gao L, et al. Goniothalamin prevents lipopolysaccharide-induced acute lung injury and inflammation via TLR-4/NF-κB signaling pathway[J]. J Biochem Mol Toxicol, 2023, 37(11): e23461. DOI: 10.1002/jbt.23461.
|
| [5] |
Xie Y, Ran L, Yue C, et al. Delivery of miR-26a-5p by subcutaneous adipose tissue-derived extracellular vesicles alleviates acute lung injury in mice through CHUK/NF-κB pathway[J]. Int J Nanomedicine, 2025, 20: 6001-6021. DOI: 10.2147/IJN.S514623.
|
| [6] |
Xie X, Chen M, Pei M, et al. Predictive value of nutritional status for symptomatic radiation pneumonitis in patients with thoracic cancer undergoing radiotherapy[J]. Nutr Cancer, 2025, 5(10): 1-11. DOI: 10.1080/01635581.2025.2500113.
|
| [7] |
Chen J, Song P, Peng Z, et al. The controlling nutritional status (CONUT) score and prognosis in malignant tumors: a systematic review and meta-analysis[J]. Nutr Cancer, 2022, 74(9): 3146-3163. DOI: 10.1080/01635581.2022.2059091.
|
| [8] |
Zhang Y, Kong FF, Zhu ZQ, et al. Controlling nutritional status (CONUT) score is a prognostic marker in Ⅲ-Ⅳ NSCLC patients receiving first-line chemotherapy[J]. BMC Cancer, 2023, 23(1): 225. DOI: 10.1186/s12885-023-10682-z.
|
| [9] |
Zhu Y, Han Q, Wang L, et al. Jinhua qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway[J]. J Ethnopharmacol, 2023, 301: 115763. DOI: 10.1016/j.jep.2022.115763.
|
| [10] |
中华人民共和国国家卫生健康委员会医政医管局. 食管癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(10): 1247-1268. DOI: 10.3760/cma.j.cn115610-20220726-00433.
|
| [11] |
邢力刚, 马晓林. 2021版《中华医学会肿瘤学分会肺癌临床诊疗指南》非小细胞肺癌诊疗更新专家解读[J]. 疑难病杂志, 2022, 21(6): 557-560. DOI: 10.3969/j.issn.1671-6450.2022.06.001.
|
| [12] |
Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC)[J]. Int J Radiat Oncol Biol Phys, 1995, 31(5): 1341-1346. DOI: 10.1016/0360-3016(95)00060-C.
|
| [13] |
Ignacio de Ulíbarri J, González-Madroño A, et al. CONUT: a tool for controlling nutritional status. First validation in a hospital population[J]. Nutr Hosp, 2005, 20(1): 38-45.
pmid: 15762418
|
| [14] |
Ying HJ, Fang M, Chen M. Progress in the mechanism of radiation-induced lung injury[J]. Chin Med J (Engl), 2020, 134(2): 161-163. DOI: 10.1097/CM9.0000000000001032.
|
| [15] |
Zhang Y, Shen WX, Li P, et al. Serum interleukin levels predict occurrence of acute radiation pneumonitis and overall survival in thoracic tumours[J]. Clin Invest Med, 2025, 48(1): 29-38. DOI: 10.3138/cim-2024-0262.
pmid: 40131214
|
| [16] |
Verma S, Dutta A, Dahiya A, et al. Quercetin-3-rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling[J]. Phytomedicine, 2022, 99: 154004. DOI: 10.1016/j.phymed.2022.154004.
|
| [17] |
Zhang M, Lan H, Peng S, et al. MiR-223-3p attenuates radiation-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages[J]. Int Immunopharmacol, 2023, 122: 110616. DOI: 10.1016/j.intimp.2023.110616.
|
| [18] |
Hong H, Lou S, Zheng F, et al. Hydnocarpin D attenuates lipopoly-saccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway[J]. Phytomedicine, 2022, 101: 154143. DOI: 10.1016/j.phymed.2022.154143.
|
| [19] |
Godbole NM, Chowdhury AA, Chataut N, et al. Tight junctions, the epithelial barrier, and Toll-like receptor-4 during lung injury[J]. Inflammation, 2022, 45(6): 2142-2162. DOI: 10.1007/s10753-022-01708-y.
pmid: 35779195
|
| [20] |
Zhang Z, Zhou J, Verma V, et al. Crossed pathways for radiation-induced and immunotherapy-related lung injury[J]. Front Immunol, 2021, 12: 774807. DOI: 10.3389/fimmu.2021.774807.
|
| [21] |
Raeispour M, Talebpour Amiri F, Farzipour S, et al. Febuxostat, an inhibitor of xanthine oxidase, ameliorates ionizing radiation-induced lung injury by suppressing caspase-3, oxidative stress and NF-κB[J]. Drug Chem Toxicol, 2022, 45(6): 2586-2593. DOI: 10.1080/01480545.2021.1977315.
|
| [22] |
张静, 毛英. 血清转化生长因子β1、白细胞介素-6、Toll样受体-4、核转录因子κB联合评估非小细胞肺癌放射性肺炎病情严重程度的价值[J]. 实用临床医药杂志, 2024, 28(14): 12-17. DOI: 10.7619/jcmp.20234065.
|
| [23] |
Kheirouri S, Alizadeh M. Prognostic potential of the preoperative controlling nutritional status (CONUT) score in predicting survival of patients with cancer: a systematic review[J]. Adv Nutr, 2021, 12(1): 234-250. DOI: 10.1093/advances/nmaa102.
pmid: 32910812
|
| [24] |
Liu F, Luo Q, Xi Y, et al. Early nutritional intervention in patients with non-small cell lung cancer receiving concurrent chemoradiotherapy: a phase Ⅱ prospective study[J]. Nutrients, 2025, 17(8): 1389. DOI: 10.3390/nu17081389.
|
| [25] |
Yang LT, Zhou L, Chen L, et al. Establishment and verification of a prediction model for symptomatic radiation pneumonitis in patients with esophageal cancer receiving radiotherapy[J]. Med Sci Monit, 2021, 27: e930515. DOI: 10.12659/MSM.930515.
|