[1] |
中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J]. 国际肿瘤学杂志, 2024, 51(7): 385-410. DOI: 10.3760/cma.j.cn371439-20240415-00067.
|
[2] |
Yoh T, Seo S, Taura K, et al. Surgery for recurrent hepatocellular carcinoma: achieving long-term survival[J]. Ann Surg, 2021, 273(4): 792-799. DOI: 10.1097/sla.0000000000003358.
|
[3] |
Shi C, Zhao Q, Liao B, et al. Anatomic resection and wide resection margin play an important role in hepatectomy for hepatocellular carcinoma with peritumoural micrometastasis[J]. ANZ J Surg, 2019, 89(11): E482-E486. DOI: 10.1111/ans.15396.
|
[4] |
Zhang XP, Chai ZT, Gao YZ, et al. Postoperative adjuvant sorafenib improves survival outcomes in hepatocellular carcinoma patients with microvascular invasion after R0 liver resection: a propensity score matching analysis[J]. HPB (Oxford), 2019, 21(12): 1687-1696. DOI: 10.1016/j.hpb.2019.04.014.
|
[5] |
中国医师协会肝癌专业委员会, 沈锋, 程树群, 等. 肝细胞癌伴微血管侵犯诊断和治疗中国专家共识(2024版)[J]. 中华消化外科杂志, 2024, 23(2): 153-164. DOI: 10.3760/cma.j.cn115610-2024 0125-00041.
|
[6] |
Sheng X, Ji Y, Ren GP, et al. A standardized pathological proposal for evaluating microvascular invasion of hepatocellular carcinoma: a multicenter study by LCPGC[J]. Hepatol Int, 2020, 14(6): 1034-1047. DOI: 10.1007/s12072-020-10111-4.
pmid: 33369707
|
[7] |
Hong SB, Choi SH, Kim SY, et al. MRI features for predicting microvascular invasion of hepatocellular carcinoma: a systematic review and meta-analysis[J]. Liver Cancer, 2021, 10(2): 94-106. DOI: 10.1159/000513704.
pmid: 33981625
|
[8] |
Li H, Li T, Hu J, et al. A nomogram to predict microvascular invasion in early hepatocellular carcinoma[J]. J Cancer Res Ther, 2021, 17(3): 652-657. DOI: 10.4103/jcrt.JCRT_1714_20.
pmid: 34269295
|
[9] |
Song L, Li J, Luo Y. The importance of a nonsmooth tumor margin and incomplete tumor capsule in predicting HCC microvascular invasion on preoperative imaging examination: a systematic review and meta-analysis[J]. Clin Imaging, 2021, 76: 77-82. DOI: 10. 1016/j.clinimag.2020.11.057.
|
[10] |
Chang Y, Guo T, Zhu B, et al. A novel nomogram for predicting microvascular invasion in hepatocellular carcinoma[J]. Ann Hepatol, 2023, 28(6): 101136. DOI: 10.1016/j.aohep.2023.101136.
|
[11] |
Wang Z, Cao L, Wang J, et al. A novel predictive model of microvascular invasion in hepatocellular carcinoma based on differential protein expression[J]. BMC Gastroenterol, 2023, 23(1): 89. DOI: 10.1186/s12876-023-02729-z.
|
[12] |
Xin Z, Li J, Zhang H, et al. Cancer genomic alterations can be potential biomarkers predicting microvascular invasion and early recurrence of hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 783109. DOI: 10.3389/fonc.2022.783109.
|
[13] |
Zhang N, Wang Z, Lv J, et al. Characterization of gut microbiota and exploration of potential predictive model for hepatocellular carcinoma microvascular invasion[J]. Front Med (Lausanne), 2022, 9: 836369. DOI: 10.3389/fmed.2022.836369.
|
[14] |
董碧菁, 王莉, 刘治坤. 基于术前资料的肝细胞癌微血管侵犯风险评分模型的建立[J]. 中国现代医生, 2024, 62(4): 38-42. DOI: 10.3969/j.issn.1673-9701.2024.04.010.
|
[15] |
Chen S, Wang C, Gu Y, et al. Prediction of microvascular invasion and its M2 classification in hepatocellular carcinoma based on nomogram analyses[J]. Front Oncol, 2021, 11: 774800. DOI: 10. 3389/fonc.2021.774800.
|
[16] |
Zhou Q, Zhou C, Yin Y, et al. Development and validation of a nomogram combining hematological and imaging features for preoperative prediction of microvascular invasion in hepatocellular carcinoma patients[J]. Ann Transl Med, 2021, 9(5): 402. DOI: 10.21037/atm-20-4695.
|
[17] |
Sun SW, Liu QP, Xu X, et al. Direct comparison of four presurgical stratifying schemes for prediction of microvascular invasion in hepatocellular carcinoma by gadoxetic acid-enhanced MRI[J]. J Magn Reson Imaging, 2020, 52(2): 433-447. DOI: 10.1002/jmri. 27043.
|
[18] |
Lei Z, Li J, Wu D, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria[J]. JAMA Surg, 2016, 151(4): 356-363. DOI: 10.1001/jamasurg.2015.4257.
pmid: 26579636
|
[19] |
Nam D, Chapiro J, Paradis V, et al. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction[J]. JHEP Rep, 2022, 4(4): 100443. DOI: 10.1016/j.jhepr.2022. 100443.
|
[20] |
冯源, 兰晓莉. 影像组学介绍[J]. 中华核医学与分子影像杂志, 2023, 43(1): 55-60. DOI: 10.3760/cma.j.cn321828-20211130-00427.
|
[21] |
罗家佳, 李倩, 杜勇. 影像组学预测肝细胞癌微血管侵犯的研究现状[J]. 中国CT和MRI杂志, 2024, 22(2): 176-178. DOI: 10.3969/j.issn.1672-5131.2024.02.054.
|
[22] |
Zhang K, Zhang L, Li WC, et al. Radiomics nomogram for the prediction of microvascular invasion of HCC and patients' benefit from postoperative adjuvant TACE: a multi-center study[J]. Eur Radiol, 2023, 33(12): 8936-8947. DOI: 10.1007/s00330-023-09824-5.
pmid: 37368104
|
[23] |
Xiao Q, Zhu W, Tang H, et al. Ultrasound radiomics in the prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J]. Heliyon, 2023, 9(6): e16997. DOI: 10.1016/j.heliyon.2023.e16997.
|
[24] |
Zhou HY, Cheng JM, Chen TW, et al. CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis[J]. Clinics, 2023, 78: 100264. DOI: 10.1016/j.clinsp.2023.100264.
|
[25] |
Sun BY, Gu PY, Guan RY, et al. Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma[J]. World J Surg Oncol, 2022, 20(1): 189. DOI: 10.1186/s12957-022-02645-8.
|
[26] |
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. DOI: 10.1016/j.media.2017.07.005.
pmid: 28778026
|
[27] |
徐伟, 郑威, 钱炜, 等. 一种深度学习模型的研究与应用[J]. 计算机技术与发展, 2020, 30(7): 135-139. DOI: 10.3969/j.issn. 1673-629X.2020.07.029.
|
[28] |
van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging-"how-to" guide and critical reflection[J]. Insights Imaging, 2020, 11(1): 91. DOI: 10.1186/s13244-020-00887-2.
|
[29] |
Wei J, Jiang H, Zeng M, et al. Prediction of microvascular invasion in hepatocellular carcinoma via deep learning: a multi-center and prospective validation study[J]. Cancers (Basel), 2021, 13(10): 2368. DOI: 10.3390/cancers13102368.
|
[30] |
Liu SC, Lai J, Huang JY, et al. Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals[J]. Cancer Imaging, 2021, 21(1): 56. DOI: 10.1186/s40644-021-00425-3.
|
[31] |
Wang L, Wu M, Li R, et al. MVI-mind: a novel deep-learning strategy using computed tomography (CT)-based radiomics for end-to-end high efficiency prediction of microvascular invasion in hepatocellular carcinoma[J]. Cancers (Basel), 2022, 14(12): 2956. DOI: 10.3390/cancers14122956.
|