
国际肿瘤学杂志 ›› 2026, Vol. 53 ›› Issue (1): 47-52.doi: 10.3760/cma.j.cn371439-20250513-00006
收稿日期:2025-05-13
出版日期:2026-01-08
发布日期:2026-01-13
通讯作者:
姚文涛,Email: wentaoyao@sina.cn基金资助:Received:2025-05-13
Online:2026-01-08
Published:2026-01-13
Supported by:摘要:
恶性肿瘤已成为全球公共卫生领域的重大挑战,严重威胁人类健康及社会发展。尽管现有临床治疗策略不断进步,整体疗效仍有显著局限。在免疫检查点抑制剂的创新应用及大量临床试验与真实世界证据的支持下,新辅助免疫治疗正引领可切除性肿瘤迈向免疫治疗新时代。然而,随着研究的深入,该领域仍面临诸多亟待解决的关键问题。系统分析新辅助免疫治疗的分子机制、临床试验进展及真实世界应用,有望深度揭示当前治疗瓶颈及未来发展方向。
赵元, 姚文涛. 恶性肿瘤新辅助免疫治疗的现状与挑战[J]. 国际肿瘤学杂志, 2026, 53(1): 47-52.
Zhao Yuan, Yao Wentao. Current status and challenges of neoadjuvant immunotherapy in malignant tumors[J]. Journal of International Oncology, 2026, 53(1): 47-52.
表1
不同瘤种新辅助免疫治疗关键临床试验的疗效与安全性总结"
| 瘤种 | 注册号 | 期别 | 治疗方案 | 疗效指标 | 3~5级不良 事件发生率 | 参考文献 |
|---|---|---|---|---|---|---|
| 头颈部鳞状细胞癌 | NCT03247712 | Ⅰ期 | 纳武利尤单抗+放疗(15例) | MPR率:86%,pCR率:67% | 19% | [ |
| 非小细胞肺癌 | NCT03030131 | Ⅱ期 | 度伐利尤单抗(46例) | MPR率:19%,12个月生存率:89%, 12个月无瘤生存率:78% | 无 | [ |
| 非小细胞肺癌 | NCT03158129 | Ⅱ期 | 纳武利尤单抗(23例)或纳武利尤单抗+伊匹木单抗(21例) | MPR率:24%比50%, pCR率:10%比38% | 13%比10% | [ |
| 非小细胞肺癌 | NCT02998528 | Ⅲ期 | 化疗(176例)或纳武利尤单抗+ 化疗(176例) | 中位无事件生存期:20.8个月比 31.6个月,pCR率:2.2%比24.0% | 36.9%比33.5% | [ |
| 非小细胞肺癌 | NCT02904954 | Ⅱ期 | 度伐利尤单抗(30例)或度伐利尤单抗+放疗(30例) | MPR率:6.7%比53.3% | 17%比20% | [ |
| 食管鳞状细胞癌 | ChiCTR2000037488 | Ⅱ期 | 替雷利珠单抗+化疗(45例) | MPR率:72%,pCR率:50% | 42.2% | [ |
| 胃及胃食管结合部腺癌 | NCT04065282 | Ⅱ期 | 信迪利单抗+化疗(36例) | MPR率:47.2%,pCR率:19.4%,1年无瘤 生存率:90.3%,1年生存率:94.1% | 13.9% | [ |
| 胃及胃食管结合部腺癌 | NCT03631615 | Ⅱ期 | 卡瑞利珠单抗+放疗+化疗 (36例) | MPR率:44.4%,pCR率:33.3%,2年无进展生存率:66.9%,2年生存率:76.1% | 77.8% | [ |
| 肝细胞癌 | NCT03916627 | Ⅱ期 | 西米普利单抗(21例) | 切除肿瘤中坏死面积>70%比例:20% | 10% | [ |
| 肝细胞癌 | NCT04297202 | Ⅱ期 | 卡瑞利珠单抗+阿帕替尼 (18例) | MPR率:17.6%,pCR率:5.9%, 1年无复发生存率:53.85% | 16.7% | [ |
| [1] | Topalian SL, Forde PM, Emens LA, et al. Neoadjuvant immune checkpoint blockade: a window of opportunity to advance cancer immunotherapy[J]. Cancer Cell, 2023, 41(9): 1551-1566. DOI: 10.1016/j.ccell.2023.07.011. |
| [2] | Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy[J]. Science, 2020, 367(6477): eaax0182. DOI: 10.1126/science.aax0182. |
| [3] | Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks[J]. Front Immunol, 2023, 14: 1212476. DOI: 10.3389/fimmu.2023.1212476. |
| [4] |
Luoma AM, Suo S, Wang Y, et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy[J]. Cell, 2022, 185(16): 2918-2935.e29. DOI: 10.1016/j.cell.2022.06.018.
pmid: 35803260 |
| [5] | Caushi JX, Zhang J, Ji Z, et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers[J]. Nature, 2021, 596(7870): 126-132. DOI: 10.1038/s41586-021-03752-4. |
| [6] | Hui Z, Zhang J, Ren Y, et al. Single-cell profiling of immune cells after neoadjuvant pembrolizumab and chemotherapy in ⅢA non-small cell lung cancer (NSCLC)[J]. Cell Death Dis, 2022, 13(7): 607. DOI: 10.1038/s41419-022-05057-4. |
| [7] |
Bassez A, Vos H, Van Dyck L, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer[J]. Nat Med, 2021, 27(5): 820-832. DOI: 10.1038/s41591-021-01323-8.
pmid: 33958794 |
| [8] | Lee AH, Sun L, Mochizuki AY, et al. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma[J]. Nat Commun, 2021, 12(1): 6938. DOI: 10.1038/s41467-021-26940-2. |
| [9] | Wislez M, Mazieres J, Lavole A, et al. Neoadjuvant durvalumab for resectable non-small-cell lung cancer (NSCLC): results from a multicenter study (IFCT-1601 IONESCO)[J]. J Immunother Cancer, 2022, 10(10): e005636. DOI: 10.1136/jitc-2022-005636. |
| [10] |
Cascone T, William WN Jr, Weissferdt A, et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial[J]. Nat Med, 2021, 27(3): 504-514. DOI: 10.1038/s41591-020-01224-2.
pmid: 33603241 |
| [11] | Marron TU, Fiel MI, Hamon P, et al. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(3): 219-229. DOI: 10.1016/S2468-1253(21)00385-X. |
| [12] | 蔡刚祥, 李境, 许斌. 肺癌新辅助免疫治疗研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 366-370. DOI: 10.3760/cma.j.cn371439-20220323-00070. |
| [13] | Forde PM, Spicer J, Lu S, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer[J]. N Engl J Med, 2022, 386(21): 1973-1985. DOI: 10.1056/NEJMoa2202170. |
| [14] | Shen D, Wang J, Wu J, et al. Neoadjuvant pembrolizumab with chemotherapy for the treatment of stage ⅡB -ⅢB resectable lung squamous cell carcinoma[J]. J Thorac Dis, 2021, 13(3): 1760-1768. DOI: 10.21037/jtd-21-103. |
| [15] |
Boch T, Frost N, Sommer L, et al. Pathologic responses in oligometastatic NSCLC patients treated with neoadjuvant immune checkpoint blockade with and without chemotherapy followed by surgery[J]. Lung Cancer, 2022, 164: 46-51. DOI: 10.1016/j.lungcan.2021.11.009.
pmid: 34998106 |
| [16] | Tfayli A, Al Assaad M, Fakhri G, et al. Neoadjuvant chemotherapy and avelumab in early stage resectable nonsmall cell lung cancer[J]. Cancer Med, 2020, 9(22): 8406-8411. DOI: 10.1002/cam4.3456. |
| [17] | Hu J, Chen J, Ou Z, et al. Neoadjuvant immunotherapy, chemotherapy, and combination therapy in muscle-invasive bladder cancer: a multi-center real-world retrospective study[J]. Cell Rep Med, 2022, 3(11): 100785. DOI: 10.1016/j.xcrm.2022.100785. |
| [18] | Yan X, Duan H, Ni Y, et al. Tislelizumab combined with chemotherapy as neoadjuvant therapy for surgically resectable esophageal cancer: a prospective, single-arm, phase Ⅱ study (TD-NICE)[J]. Int J Surg, 2022, 103: 106680. DOI: 10.1016/j.ijsu.2022.106680. |
| [19] | Jiang H, Yu X, Li N, et al. Efficacy and safety of neoadjuvant sintilimab, oxaliplatin and capecitabine in patients with locally advanced, resectable gastric or gastroesophageal junction adeno-carcinoma: early results of a phase 2 study[J]. J Immunother Cancer, 2022, 10(3): e003635. DOI: 10.1136/jitc-2021-003635. |
| [20] | Leidner R, Crittenden M, Young K, et al. Neoadjuvant immuno-radiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma[J]. J Immunother Cancer, 2021, 9(5): e002485. DOI: 10.1136/jitc-2021-002485. |
| [21] | Altorki NK, McGraw TE, Borczuk AC, et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial[J]. Lancet Oncol, 2021, 22(6): 824-835. DOI: 10.1016/S1470-2045(21)00149-2. |
| [22] | Wise-Draper TM, Gulati S, Palackdharry S, et al. Phase Ⅱ clinical trial of neoadjuvant and adjuvant pembrolizumab in resectable local-regionally advanced head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2022, 28(7): 1345-1352. DOI: 10.1158/1078-0432.CCR-21-3351. |
| [23] | Tang Z, Wang Y, Liu D, et al. The Neo-PLANET phase Ⅱ trial of neoadjuvant camrelizumab plus concurrent chemoradiotherapy in locally advanced adenocarcinoma of stomach or gastroesophageal junction[J]. Nat Commun, 2022, 13(1): 6807. DOI: 10.1038/s41467-022-34403-5. |
| [24] |
Li Q, Wu P, Du Q, et al. cGAS-STING, an important signaling pathway in diseases and their therapy[J]. MedComm, 2024, 5(4): e511. DOI: 10.1002/mco2.511.
pmid: 38525112 |
| [25] | Xia Y, Tang W, Qian X, et al. Efficacy and safety of camrelizumab plus apatinib during the perioperative period in resectable hepatocellular carcinoma: a single-arm, open label, phase Ⅱ clinical trial[J]. J Immunother Cancer, 2022, 10(4): e004656. DOI: 10.1136/jitc-2022-004656. |
| [26] | Tian Y, Zhang L, Jin N, et al. Clinical response to neoadjuvant immunotherapy combined with targeted therapy and chemotherapy in oral squamous cell carcinoma: experience in three patients[J]. Onco Targets Ther, 2022, 15: 353-359. DOI: 10.2147/OTT.S355349. |
| [27] | 刘新志, 熊振, 肖斌毅, 等. 基于多中心真实世界数据的结直肠癌联合免疫治疗的新辅助治疗安全性及其疗效[J]. 中华胃肠外科杂志, 2022, 25(3): 219-227. DOI: 10.3760/cma.j.cn441530-20220228-00070. |
| [28] | Yang Y, Tan L, Hu J, et al. Safety and efficacy of neoadjuvant treatment with immune checkpoint inhibitors in esophageal cancer: real-world multicenter retrospective study in China[J]. Dis Esophagus, 2022, 35(11): doac031. DOI: 10.1093/dote/doac031. |
| [29] | Zhao D, Xu L, Wu J, et al. Comparison of perioperative outcomes among non-small cell lung cancer patients with neoadjuvant immune checkpoint inhibitor plus chemotherapy, EGFR-TKI, and chemo-therapy alone: a real-world evidence study[J]. Transl Lung Cancer Res, 2022, 11(7): 1468-1478. DOI: 10.21037/tlcr-22-476. |
| [30] | Chen F, Zhang H, Li Y, et al. Complete remission in a patient with sinonasal squamous cell carcinoma receiving neoadjuvant tislelizumab plus chemotherapy: a case report[J]. Front Immunol, 2024, 15: 1414529. DOI: 10.3389/fimmu.2024.1414529. |
| [31] | Chan M, Krishnan T, Townsend A, et al. The current landscape of neoadjuvant therapy for resectable colon cancer[J]. Expert Rev Anticancer Ther, 2025, 25(8): 901-913. DOI: 10.1080/14737140.2025.2517881. |
| [32] | 邓隽军, 赵大勇, 李淼. 免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. DOI: 10.3760/cma.j.cn371439-20230404-00108. |
| [33] | Ramos-Casals M, Sisó-Almirall A. Immune-related adverse events of immune checkpoint inhibitors[J]. Ann Intern Med, 2024, 177(2): ITC17-ITC32. DOI: 10.7326/AITC202402200. |
| [34] |
Wang SJ, Dougan SK, Dougan M. Immune mechanisms of toxicity from checkpoint inhibitors[J]. Trends Cancer, 2023, 9(7): 543-553. DOI: 10.1016/j.trecan.2023.04.002.
pmid: 37117135 |
| [35] | Suijkerbuijk KPM, van Eijs MJM, van Wijk F, et al. Clinical and translational attributes of immune-related adverse events[J]. Nat Cancer, 2024, 5(4): 557-571. DOI: 10.1038/s43018-024-00730-3. |
| [36] | Adashek JJ, Moran JA, Le DT, et al. Lessons learned from a decade of immune checkpoint inhibition: the good, the bad, and the ugly[J]. Cancer Metastasis Rev, 2025, 44(2): 43. DOI: 10.1007/s10555-025-10260-8. |
| [37] | Li Y, Chen T, Nie TY, et al. Hyperprogressive disease in non-small cell lung cancer after PD-1/PD-L1 inhibitors immunotherapy: underlying killer[J]. Front Immunol, 2023, 14: 1200875. DOI: 10.3389/fimmu.2023.1200875. |
| [38] | Gomes da Morais AL, de Miguel M, Cardenas JM, et al. Comparison of radiological criteria for hyperprogressive disease in response to immunotherapy[J]. Cancer Treat Rev, 2020, 91: 102116. DOI: 10.1016/j.ctrv.2020.102116. |
| [39] |
Djunadi TA, Oh Y, Lee J, et al. Redefining clinical hyperprogression: the incidence, clinical implications, and risk factors of hyperprogression in non-small cell lung cancer treated with immunotherapy[J]. Clin Lung Cancer, 2024, 25(4): 365-375.e14. DOI: 10.1016/j.cllc.2024.03.001.
pmid: 38644088 |
| [40] | Kang YK, Reck M, Nghiem P, et al. Assessment of hyperprogression versus the natural course of disease development with nivolumab with or without ipilimumab versus placebo in phase Ⅲ, randomized, controlled trials[J]. J Immunother Cancer, 2022, 10(4): e004273. DOI: 10.1136/jitc-2021-004273. |
| [41] |
Frelaut M, du Rusquec P, de Moura A, et al. Pseudoprogression and hyperprogression as new forms of response to immunotherapy[J]. BioDrugs, 2020, 34(4): 463-476. DOI: 10.1007/s40259-020-00425-y.
pmid: 32394415 |
| [42] | Zhang C, Zhang C, Wang H. Immune-checkpoint inhibitor resistance in cancer treatment: current progress and future directions[J]. Cancer Lett, 2023, 562: 216182. DOI: 10.1016/j.canlet.2023.216182. |
| [43] | Yang M, Cui M, Sun Y, et al. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance[J]. Cell Commun Signal, 2024, 22(1): 338. DOI: 10.1186/s12964-024-01711-w. |
| [44] | Xiang Y, Liu X, Wang Y, et al. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges[J]. Front Immunol, 2024, 15: 1366260. DOI: 10.3389/fimmu.2024.1366260. |
| [45] | Liu X, Harbison RA, Varvares MA, et al. Immunotherapeutic strategies in head and neck cancer: challenges and opportunities[J]. J Clin Invest, 2025, 135(8): e188128. DOI: 10.1172/JCI188128. |
| [1] | 中华医学会放射肿瘤治疗学分会, 中国医师协会放射肿瘤治疗医师分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管癌放射治疗指南(2025年版)[J]. 国际肿瘤学杂志, 2026, 53(1): 1-15. |
| [2] | 杨心婷, 马腾宇, 关树龙, 杨梅, 姜宙, 杨心茹, 姜良乾, 高美华, 徐颖婕, 丛蓓蓓. 靶向CD59抑制口腔鳞状细胞癌细胞增殖、迁移并诱导凋亡的机制研究[J]. 国际肿瘤学杂志, 2026, 53(1): 16-23. |
| [3] | 雷胜飞, 邱俊, 王建礼. CONUT评分联合血清TLR-4、NF-κB预测胸部恶性肿瘤放疗患者放射性肺损伤的价值[J]. 国际肿瘤学杂志, 2026, 53(1): 24-30. |
| [4] | 余云鹏, 戴春华, 凌锐. 替雷利珠单抗联合化疗治疗进展期食管癌的疗效及安全性[J]. 国际肿瘤学杂志, 2026, 53(1): 31-37. |
| [5] | 张小茜, 程春来. ALDH6A1在肾透明细胞癌中的表达及其对肾癌细胞增殖、凋亡和侵袭的影响[J]. 国际肿瘤学杂志, 2026, 53(1): 38-46. |
| [6] | 刘欣蕾, 李亚茹, 陈书宁, 唐圣豪, 秦艳, 刘彦魁, 齐晓薇. HER2超低表达乳腺癌的临床研究进展[J]. 国际肿瘤学杂志, 2026, 53(1): 53-56. |
| [7] | 李婷, 周琦, 张倩, 陈洁. 晚期非小细胞肺癌抗PD-1/PD-L1治疗耐药机制的研究进展[J]. 国际肿瘤学杂志, 2026, 53(1): 57-61. |
| [8] | 王雨, 李袁飞, 郭云童. 免疫评分系统在胃癌中的研究进展[J]. 国际肿瘤学杂志, 2026, 53(1): 62-64. |
| [9] | 王梦菊, 王霞. 白术内酯Ⅱ对结肠癌小鼠的抗肿瘤作用及免疫调节机制[J]. 国际肿瘤学杂志, 2025, 52(9): 545-553. |
| [10] | 李鹏, 张双, 刘华锋, 纪娜, 候向坤, 席奥航, 宗建海. 基于kV正交图像引导的头部肿瘤伽玛刀无痛面模分次治疗的摆位误差分析研究[J]. 国际肿瘤学杂志, 2025, 52(9): 554-559. |
| [11] | 吴松友, 王刚, 王文玲, 董洪敏, 陈唯唯, 李小凯, 陈望花, 左凯. 直肠癌盆腔调强放疗中腹围对肠道受照剂量体积及急性肠道毒性影响的前瞻性队列研究[J]. 国际肿瘤学杂志, 2025, 52(9): 566-575. |
| [12] | 邱可欣, 李梦真, 国浩然, 凡梦思, 闫莉. 老年晚期卵巢癌患者不同手术方式的预后分析[J]. 国际肿瘤学杂志, 2025, 52(9): 576-582. |
| [13] | 刘美, 胡玉崇, 李凤桐, 朝乐门, 柳檬, 亢琳琳. SHCBP1在恶性肿瘤中的作用机制及临床研究进展[J]. 国际肿瘤学杂志, 2025, 52(9): 583-586. |
| [14] | 澈根, 乌日汗, 朱恬恬, 东丽. 非小细胞肺癌中cGAS-STING信号通路的作用机制及其靶向治疗策略[J]. 国际肿瘤学杂志, 2025, 52(9): 587-591. |
| [15] | 程红蕾, 王体, 兰志东, 巩合义. 临床指标在食管癌新辅助治疗疗效预测中的价值[J]. 国际肿瘤学杂志, 2025, 52(9): 592-597. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
