国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (10): 609-613.doi: 10.3760/cma.j.cn371439-20250312-00104

• 论著 • 上一篇    下一篇

成人胶质瘤早期死亡影响因素分析及风险预测模型构建

代玉娟, 陈羡英, 黄巍, 陈大朝()   

  1. 第九〇九医院(厦门大学附属东南医院)肿瘤科,漳州 363000
  • 收稿日期:2025-03-12 修回日期:2025-05-28 出版日期:2025-10-08 发布日期:2025-11-12
  • 通讯作者: 陈大朝 E-mail:cdq13960179723@126.com
  • 基金资助:
    福建省自然科学基金(2023J011833)

Analysis of influencing factors and construction of a risk prediction model for early death in adult glioma

Dai Yujuan, Chen Xianying, Huang Wei, Chen Dachao()   

  1. Department of Oncology, 909th Hospital (Dongnan Hospital of Xiamen University), Zhangzhou 363000, China
  • Received:2025-03-12 Revised:2025-05-28 Online:2025-10-08 Published:2025-11-12
  • Contact: Chen Dachao E-mail:cdq13960179723@126.com
  • Supported by:
    Natural Science Foundation of Fujian Province of China(2023J011833)

摘要:

目的 探讨成人胶质瘤发生早期死亡(3个月)的影响因素,并构建风险预测模型。 方法 回顾性分析第九〇九医院(厦门大学附属东南医院)2020年6月至2024年6月收治的228例成人胶质瘤患者的临床资料。根据患者3个月内是否发生死亡分为死亡组(n=32)和存活组(n=196),比较两组临床资料。采用多因素logistic回归分析患者3个月内死亡的影响因素,并构建logistic回归预测模型,绘制受试者操作特征(ROC)曲线分析该模型的预测价值。 结果 两组患者年龄、性别、高血压、糖尿病、肿瘤部位、肿瘤累及范围、神经功能受损、肿瘤最大径、化疗、放疗差异均无统计学意义(均P>0.05),死亡组患者脑疝(χ2=20.74,P<0.001)、入院Karnofsky功能状态(KPS)评分≤70分(χ2=26.66,P<0.001)、肿瘤分级Ⅲ~Ⅳ级(χ2=28.70,P<0.001)、MGMT启动子未甲基化(χ2=10.25,P=0.001)、IDH野生型(χ2=6.18,P=0.013)、肿瘤未全切除(χ2=10.37,P=0.001)比例高于存活组。多因素分析显示,脑疝(OR=19.78,95%CI为5.33~73.41,P<0.001)、入院KPS评分≤70分(OR=19.64,95%CI为5.54~69.59,P<0.001)、肿瘤分级Ⅲ~Ⅳ级(OR=9.40,95%CI为3.02~29.27,P<0.001)、MGMT启动子未甲基化(OR=4.28,95%CI为1.18~15.54,P=0.027)、肿瘤未全切除(OR=9.50,95%CI为2.72~33.23,P<0.001)是胶质瘤患者发生早期死亡的独立危险因素。基于上述指标构建胶质瘤患者早期死亡风险预测模型为logit(P)=-18.04+2.96×脑疝(有=1、无=0)+2.98×入院KPS评分(≤70分=1、>70分=0)+2.24×肿瘤分级(Ⅲ~Ⅳ=1、Ⅰ~Ⅱ=0)+1.45×MGMT启动子甲基化(否=1、是=0)+2.25×肿瘤全切除(否=1、是=0)。ROC曲线分析显示,该模型对胶质瘤患者早期死亡具有预测价值,曲线下面积为0.920,95%CI为0.868~0.972,敏感性为0.842,特异性为0.906。 结论 脑疝、入院KPS评分≤70分、肿瘤分级Ⅲ~Ⅳ级、MGMT启动子未甲基化、肿瘤未全切除是成人胶质瘤患者发生早期死亡的独立危险因素,基于以上指标构建的风险预测模型具有较好的预测价值。

关键词: 神经胶质瘤, 死亡, 预后, 脑膨出

Abstract:

Objective To explore the influencing factors of early death (within 3 months) in adult glioma patients, and to construct a risk prediction model. Methods Retrospective analysis was performed on the clinical data of 228 adult glioma patients admitted to the 909th Hospital (Dongnan Hospital of Xiamen University) from June 2020 to June 2024. Patients were divided into a death group (n=32) and a survival group (n=196) based on whether death occurred within 3 months, and the clinical data between the two groups were compared. Multivariate logistic regression was used to analyze the influencing factors of death within 3 months, a logistic regression prediction model was constructed, and receiver operator characteristic (ROC) curve was plotted to analyze the predictive value of the model. Results There were no statistically significant differences between the two groups in age, gender, hypertension, diabetes, tumor location, tumor involvement, neurological impairment, maximum tumor diameter, chemotherapy, or radiotherapy (all P>0.05). The death group showed higher proportions of cerebral herniation (χ²=20.74, P<0.001), hospital admission Karnofsky performance status (KPS) score ≤70 (χ²=26.66, P<0.001), tumor grade Ⅲ-Ⅳ (χ²=28.70, P<0.001), MGMT promoter unmethylation (χ²=10.25, P=0.001), IDH wild-type (χ²=6.18, P=0.013), and incomplete tumor resection (χ²=10.37, P=0.001) compared with the survival group. Multivariate analysis revealed that cerebral herniation (OR=19.78, 95%CI: 5.33-73.41, P<0.001), hospital admission KPS score ≤70 (OR=19.64, 95%CI: 5.54-69.59, P<0.001), tumor grade Ⅲ-Ⅳ (OR=9.40, 95%CI: 3.02-29.27, P<0.001), MGMT promoter unmethylation (OR=4.28, 95%CI: 1.18-15.54, P=0.027), and incomplete tumor resection (OR=9.50, 95%CI: 2.72-33.23, P<0.001) were independent risk factors for early death in glioma patients. The risk prediction model for early death in glioma patients constructed based on these indicators was logit(P)=-18.04+2.96×cerebral herniation (with=1, without=0)+2.98×hospital admission KPS score (≤70=1, >70=0)+2.24×tumor grade (Ⅲ-Ⅳ=1, Ⅰ-Ⅱ=0)+1.45×MGMT promoter methylation (no=1, yes=0)+2.25×complete tumor resection (no=1, yes=0). ROC curve analysis demonstrated that this model had predictive value for early death in glioma patients, with an area under the curve of 0.920 (95%CI: 0.868-0.972), a sensitivity of 0.842, and a specificity of 0.906. Conclusions Cerebral herniation, hospital admission KPS score ≤70, tumor grade Ⅲ-Ⅳ, MGMT promoter unmethylation, and incomplete tumor resection are independent risk factors for early death in adult glioma patients. The risk prediction model constructed based on these indicators has good predictive value.

Key words: Glioma, Death, Prognosis, Encephalocele