| [1] |
Sakaguchi T, Maeda K, Takeuchi T, et al. Low handgrip strength as a marker of severity in the diagnostic criteria for cancer cachexia[J]. Clin Nutr ESPEN, 2024, 64: 435-440. DOI: 10.1016/j.clnesp.2024.10.162.
pmid: 39489299
|
| [2] |
Freire PP, Fernandez GJ, Cury SS, et al. The pathway to cancer cachexia: microRNA-regulated networks in muscle wasting based on integrative meta-analysis[J]. Int J Mol Sci, 1962, 20(8): 1962. DOI: 10.3390/ijms20081962.
|
| [3] |
Sannicandro AJ, McDonagh B, Goljanek-Whysall K. MicroRNAs as potential therapeutic targets for muscle wasting during cancer cachexia[J]. Curr Opin Clin Nutr Metab Care, 2020, 23(3): 157-163. DOI: 10.1097/MCO.0000000000000645.
|
| [4] |
Mirzoev TM. Skeletal muscle recovery from disuse atrophy: protein turnover signaling and strategies for accelerating muscle regrowth[J]. Int J Mol Sci, 2020, 21(21): 7940. DOI: 10.3390/ijms21217940.
|
| [5] |
Vainshtein A, Sandri M. Signaling pathways that control muscle mass[J]. Int J Mol Sci, 2020, 21(13): 4759. DOI: 10.3390/ijms21134759.
|
| [6] |
Cheng QQ, Mao SL, Yang LN, et al. Fuzheng Xiaoai decoction 1 ameliorated cancer cachexia-induced muscle atrophy via Akt-mTOR pathway[J]. J Ethnopharmacol, 2023, 303: 115944. DOI: 10.1016/j.jep.2022.115944.
|
| [7] |
Gomes JLP, Tobias GC, Fernandes T, et al. Effects of aerobic exercise training on MyomiRs expression in cachectic and non-cachectic cancer mice[J]. Cancers (Basel), 2021, 13(22): 5728. DOI: 10.3390/cancers13225728.
|
| [8] |
Goldbraikh D, Neufeld D, Eid-Mutlak Y, et al. USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation[J]. EMBO Rep, 2020, 21(4): e48791. DOI: 10.15252/embr.201948791.
|
| [9] |
Wang R, Kumar B, Doud EH, et al. Skeletal muscle-specific over-expression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations[J]. Mol Ther Nucleic Acids, 2022, 28: 231-248. DOI: 10.1016/j.omtn.2022.03.009.
|
| [10] |
Chen R, Yuan W, Zheng Y, et al. Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy[J]. J Nanobiotechnology, 2022, 20(1): 304. DOI: 10.1186/s12951-022-01508-4.
|
| [11] |
Xie K, Xiong H, Xiao W, et al. Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia[J]. Cancer Cell Int, 2021, 21(1): 627. DOI: 10.1186/s12935-021-02332-w.
|
| [12] |
Santos JMO, Peixoto da Silva S, Bastos MMSM, et al. Decoding the role of inflammation-related microRNAs in cancer cachexia: a study using HPV16-transgenic mice and in silico approaches[J]. J Physiol Biochem, 2022, 78(2): 439-455. DOI: 10.1007/s13105-021-00866-1.
pmid: 35298788
|
| [13] |
Kuang JX, Shen Q, Zhang RQ, et al. Carnosol attenuated atrophy of C2C12 myotubes induced by tumour-derived exosomal miR-183-5p through inhibiting Smad3 pathway activation and keeping mitochondrial respiration[J]. Basic Clin Pharmacol Toxicol, 2022, 131(6): 500-513. DOI: 10.1111/bcpt.13795.
|
| [14] |
Miao C, Zhang W, Feng L, et al. Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia[J]. Mol Ther Nucleic Acids, 2021, 24: 923-938. DOI: 10.1016/j.omtn.2021.04.015.
|
| [15] |
Okugawa Y, Toiyama Y, Hur K, et al. Circulating miR-203 derived from metastatic tissues promotes myopenia in colorectal cancer patients[J]. J Cachexia Sarcopenia Muscle, 2019, 10(3): 536-548. DOI: 10.1002/jcsm.12403.
pmid: 31091026
|
| [16] |
Hughes DC, Goodman CA, Baehr LM, et al. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple[J]. Am J Physiol Cell Physiol, 2023, 325(6): C1567-C1582. DOI: 10.1152/ajpcell.00457.2023.
|
| [17] |
Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9): 1970. DOI: 10.3390/cells9091970.
|
| [18] |
Qiu L, Chen W, Wu C, et al. Exosomes of oral squamous cell carcinoma cells containing miR-181a-3p induce muscle cell atrophy and apoptosis by transmissible endoplasmic reticulum stress signaling[J]. Biochem Biophys Res Commun, 2020, 533(4): 831-837. DOI: 10.1016/j.bbrc.2020.09.066.
|
| [19] |
Hu Y, Hu Y, Zhang S, et al. Tumor-derived miR-203a-3p potentiates muscle wasting by inducing muscle ferroptosis in pancreatic cancer[J]. Cancer Lett, 2025, 614: 217523. DOI: 10.1016/j.canlet.2025.217523.
|
| [20] |
Gallot YS, Bohnert KR. Confounding roles of ER stress and the unfolded protein response in skeletal muscle atrophy[J]. Int J Mol Sci, 2021, 22(5): 2567. DOI: 10.3390/ijms22052567.
|
| [21] |
Bohnert KR, Gallot YS, Sato S, et al. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia[J]. FASEB J, 2016, 30(9): 3053-3068. DOI: 10.1096/fj.201600250RR.
pmid: 27206451
|
| [22] |
He WA, Calore F, Londhe P, et al. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7[J]. Proc Natl Acad Sci USA, 2014, 111(12): 4525-4529. DOI: 10.1073/pnas.1402714111.
pmid: 24616506
|
| [23] |
Freire PP, Cury SS, Lopes LO, et al. Decreased miR-497-5p suppresses IL-6 induced atrophy in muscle cells[J]. Cells, 2021, 10(12): 3527. DOI: 10.3390/cells10123527.
|