[1] |
Choi EJ, Cho YU, Hur EH, et al. Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia[J]. Haematologica, 2021, In press. DOI: 10.3324/haematol.2020.270553.
doi: 10.3324/haematol.2020.270553
|
[2] |
Quesada AE, Routbort MJ, DiNardo CD, et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease[J]. Am J Hematol, 2019, 94(7):757-766. DOI: 10.1002/ajh.25486.
doi: 10.1002/ajh.25486
pmid: 30963592
|
[3] |
Klco JM, Mullighan CG. Advances in germline predisposition to acute leukaemias and myeloid neoplasms[J]. Nat Rev Cancer, 2021, 21(2):122-137. DOI: 10.1038/s41568-020-00315-z.
doi: 10.1038/s41568-020-00315-z
|
[4] |
PolprasertC, SchulzeI, SekeresMA, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms[J]. Cancer Cell, 2015, 27(5):658-670. DOI: 10.1016/j.ccell.2015.03.017.
doi: 10.1016/j.ccell.2015.03.017
pmid: 25920683
|
[5] |
Kadono M, Kanai A, Nagamachi A, et al. Biological implications of somatic DDX41 p.R525H mutation in acute myeloid leukemia[J]. Exp Hematol, 2016, 44(8): 745-754.e4. DOI: 10.1016/j.exphem.2016.04.017.
doi: 10.1016/j.exphem.2016.04.017
pmid: 27174803
|
[6] |
Sébert M, Passet M, Raimbault A, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients[J]. Blood, 2019, 134(17):1441-1444. DOI: 10.1182/blood.2019000909.
doi: 10.1182/blood.2019000909
pmid: 31484648
|
[7] |
Peters D, Radine C, Reese A, et al. The DEAD-box RNA helicase DDX41 is a novel repressor of p21WAF1/CIP1mRNA translation[J]. J Biol Chem, 2017, 292(20):8331-8341. DOI: 10.1074/jbc.M116.772327.
doi: 10.1074/jbc.M116.772327
|
[8] |
Jiang Y, Zhu Y, Liu ZJ, et al. The emerging roles of the DDX41 protein in immunity and diseases[J]. Protein Cell, 2017, 8(2):83-89. DOI: 10.1007/s13238-016-0303-4.
doi: 10.1007/s13238-016-0303-4
pmid: 27502187
|
[9] |
Omura H, Oikawa D, Nakane T, et al. Structural and functional analysis of DDX41: a bispecific immune receptor for DNA and cyclic dinucleotide[J]. Sci Rep, 2016, 6:34756. DOI: 10.1038/srep34756.
doi: 10.1038/srep34756
|
[10] |
Maciejewski JP, Padgett RA, Brown AL, et al. DDX41-related myeloid neoplasia[J]. Semin Hematol, 2017, 54(2):94-97. DOI: 10.1053/j.seminhematol.2017.04.007.
doi: S0037-1963(17)30048-3
pmid: 28637623
|
[11] |
Hosono N. Genetic abnormalities and pathophysiology of MDS[J]. Int J Clin Oncol, 2019, 24(8):885-892. DOI: 10.1007/s10147-019-01462-6.
doi: 10.1007/s10147-019-01462-6
pmid: 31093808
|
[12] |
Negoro E, Radivoyevitch T, Polprasert C, et al. Molecular predictors of response in patients with myeloid neoplasms treated with lenalidomide[J]. Leukemia, 2016, 30(12):2405-2409. DOI: 10.1038/leu.2016.228.
doi: 10.1038/leu.2016.228
pmid: 27560106
|
[13] |
Hunter AM, Sallman DA. Current status and new treatment approaches in TP53 mutated AML[J]. Best Pract Res Clin Haematol, 2019, 32(2):134-144. DOI: 10.1016/j.beha.2019.05.004.
doi: 10.1016/j.beha.2019.05.004
|
[14] |
Welch JS. Patterns of mutations in TP53 mutated AML[J]. Best Pract Res Clin Haematol, 2018, 31(4):379-383. DOI: 10.1016/j.beha.2018.09.010.
doi: S1521-6926(18)30083-5
pmid: 30466751
|
[15] |
Döhner H, Dolnik A, Tang L, et al. Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care[J]. Leukemia, 2018, 32(12):2546-2557. DOI: 10.1038/s41375-018-0257-z.
doi: 10.1038/s41375-018-0257-z
|