[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 134.
[2] Tuttle RM, Ball DW, Byrd D, et al. Thyroid carcinoma[J]. J Natl Compr Canc Netw, 2010, 8(11): 1228-1274.
[3] Schneider DF, Chen H. New developments in the diagnosis and treatment of thyroid cancer[J]. CA Cancer J Clin, 2013, 63(6): 374-394.
[4] Xing M. Molecular pathogenesis and mechanisms of thyroid cancer[J]. Nat Rev Cancer, 2013, 13(3): 184-199.
[5] Omur O, Baran Y. An update on molecular biology of thyroid cancers[J]. Crit Rev Oncol Hematol, 2014, 90(3): 233-252.
[6] Knauf JA, Fagin JA. Role of MAPK pathway oncoproteins in thyroid cancer pathogenesis and as drug targets[J]. Curr Opin Cell Biol, 2009, 21(2): 296-303.
[7] Khan MS, Pandith AA, Azad N, et al. Impact of molecular alterations of BRAF in the pathogenesis of thyroid cancer[J]. Mutagenesis, 2014, 29(2): 131-137.
[8] Charles RP, Silva J, Iezza G, et al. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis [J]. Mol Cancer Res, 2014, 12(7): 979-986.
[9] Watanabe R, Hayashi Y, Sassa M, et al. Possible involvement of BRAFV600E in altered gene expression in papillary thyroid cancer[J]. Endocr J, 2009, 56(3): 407-414.
[10] Pasquali D, Santoro A, Bufo P, et al. Upregulation of endocrine glandderived vascular endothelial growth factor in papillary thyroid cancers displaying infiltrative patterns, lymph node metastases, and BRAF mutation[J]. Thyroid, 2011, 21(4): 391-399.
[11] Zerilli M, Zito G, Martorana A, et al. BRAF(V600E) mutation influences hypoxiainducible factor 1αexpression levels in papillary thyroid cancer[J]. Mod Pathol, 2010, 23(8): 1052-1060.
[12] Nucera C, Lawler J, Parangi S. BRAF (V600E) and thrombospondin1 promote thyroid cancer progression[J]. Cancer Res, 2011, 71(7): 2417-2422.
[13] Knauf JA, Sartor MA, Medvedovic M, et al. Progression of BRAFinduced thyroid cancer is associated with epithelialmesenchymal transition requiring concomitant MAP kinase and TGFβ signaling[J]. Oncogene, 2011, 30(28): 3153-3162.
[14] Khoury, Hu Q, Liu S, et al. Intarcystic papillary carcioma of breast: interrelationship with in situ and invasive carcinoma and a proposal of pathogenesis: array comparative genomic hybridization study of 14 cases[J]. Mod Pathol, 2014, 27(2): 194-203.
[15] Tafani M, De Santis E, Coppola L, et al. Bridging hypoxia, inflammation and estrogen receptors in thyroid cancer progression[J]. Biomed Pharmacother, 2014, 68(1): 1-5.
[16] Yamashita AS, Geraldo MV, Fuziwara CS, et al. Notch pathway is activated by MAPK signaling and influences papillary thyroid cancer prolifetration[J]. Transl Oncol, 2013, 6(2): 197-205.
[17] ChocarroCalvo A, Zaballos MA, Santisteban P, et al. DARPP32 is required for MAPK/ERK signaling in thyroid cells[J]. Mol Endocrinol, 2012, 26(3): 471-480.
[18] Karras S, Anagnostis P, Krassas GE. Vandetanib for the treatment of thyroid cancer: an update[J]. Expert Opin Drug Metab Toxical, 2014, 10(3): 469-481.
[19] Gunda V, Bucur O, Varnau J, et al. Blocks to thyroid cancer cell apoptosis can be overcome by inhabitation of the MAPK and PI3K/AKT pathways[J]. Cell Death Dis, 2014, 5: e1104.
[20] Xing M. Genetic alterations in the phosphatidylinositol 3 kinase/Akt pathway in thyroid cancer[J]. Thyroid, 2010, 20(7): 697-706.
[21] de Biase D, Visani M, Pession A, et al. Molecular diagnosis of carcinomas of the thyroid gland[J]. Front Biosci, 2014, 6: 1-14.
[22] Saji M, Ringel MD. The PI3K AktmTOR pathway in initiation and progression of thyroid tumors[J]. Mol Cell Endocrinol, 2010, 321(1): 20-28.
[23] Legakis I, Syrigos K. Recent advances in molecular diagnosis of thyroid cancer[J]. J Thyroid Res, 2011, 2011: 384213.
[24] Duman BB, Kara OI, Uˇguz A, et al. Evaluation of PTEN, PI3K, MTOR, and KRAS expression and their clinical and prognostic relevance to differentiated thyroid carcinoma[J]. Contemp Oncol (Pozn), 2014, 18(4): 234-240.
[25] Hung CM, GarciaHaro L, Sparks CA, et al. mTORdependent cell survival mechanisms[J]. Cold Spring Harb Prespect Biol, 2012,4(12): pii a008771.
[26] Larson SD, Silva SR, Rychahou PG, et al. PI3K/AKT activation is critical for early hepatic regeneration after partial hepatectomy[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(6): 1401-1410.
[27] Saji M, Narahara K, McCarty SK, et al. Akt1 deficiency delays tumor progression, vascular invasion, and distant metastasis in a murine model of thyroid cancer[J]. Oncogene, 2011, 30(42): 4307-4315.
[28] Parke RL, Bloch A, McGuinness SP. Effect of veryhighflow nasal therapy on airway pressure and endexpiratory lung impedance in healthy volunteers[J]. Respir Care, 2015, 60(10): 1397-1403.
[29] Pacifico F, Leonardi A. Role of NFkappaB in thyroid cancer[J]. Mol Cell Endocrinol, 2010, 321(1): 29-35.
[30] Parker M, Mohankumar KM, Punchihewa C, et al. C11orf95RELA fusions drive oncogenic NFκB signaling in ependymomac[J]. Nature, 2014, 506(7489): 451-455.
[31] Zhang LL, Liu J, Lei S, et al. PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression[J]. Cell Signal, 2014, 26(5): 10111020.
[32] Li X, AbdelMageed AB, Mondal D, et al. The nuclear factor kappaB signaling pathway as a therapeutic target against thyroid cancers[J]. Thyroid, 2013, 23(2): 209-218. |