[1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1): 11-30.
[2] Chen L, Kasai T, Li Y, et al. A model of cancer stem cells derived from mouse induced pluripotent stem cells[J]. PLoS One, 2012, 7(4): e33544.
[3] Kellner S, Kikyo N. Transcriptional regulation of the Oct4 gene, a master gene for pluripotency[J]. Histol Histopathol, 2010, 25(3): 405-412.
[4] Gupta S, Verfaillie C, Chmielewski D, et al. Isolation and characterization of kidneyderived stem cells[J]. J American Soc Nephrol, 2006, 17(11): 3028-3040.
[5] Looijenga LH, Stoop H, de Leeuw HP, et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors[J]. Cancer Res, 2003, 63(9): 2244-2250.
[6] Raman JD, Mongan NP, Liu L, et al. Decreased expression of the human stem cell marker, Rex1 (zfp42), in renal cell carcinoma[J]. Carcinogenesis, 2006, 27(3): 499-507.
[7] Bussolati B, Moggio A, Collino F, et al. Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR145 balance[J]. Am J Physiol Renal Physiol, 2012, 302(1): F116-128.
[8] Gazda LS, Martis PC, Laramore MA, et al. Treatment of agaroseagarose RENCA macrobeads with docetaxel selects for OCT4(+) cells with tumorinitiating capability[J]. Cancer Biol Ther, 2013, 14(12): 1147-1157.
[9] Abad M, Mosteiro L, Pantoja C, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features[J]. Nature, 2013, 502(7471): 340-345.
[10] Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells[J]. Blood, 1997, 90(12): 5002-5012.
[11] Bussolati B, Bruno S, Grange C, et al. Isolation of renal progenitor cells from adult human kidney[J]. Am J Pathol, 2005, 166(2): 545-555.
[12] Angelotti ML, Ronconi E, Ballerini L, et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury[J]. Stem Cells, 2012, 30(8): 1714-1725.
[13] Bruno S, Bussolati B, Grange C, et al. CD133+ renal progenitor cells contribute to tumor angiogenesis[J]. Am J Pathol, 2006, 169(6): 2223-2235.
[14] Addla SK, Brown MD, Hart CA, et al. Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells[J]. Am J Physiol Renal Physiol, 2008, 295(3): F680-687.
[15] Costa WH, Rocha RM, Cunha IW, et al. CD133 immunohistochemical expression predicts progression and cancerrelated death in renal cell carcinoma[J]. World J Urol, 2012, 30(4): 553-558.
[16] Kim K, Ihm H, Ro JY, et al. Highlevel expression of stem cell marker CD133 in clear cell renal cell carcinoma with favorable prognosis[J]. Oncol Lett, 2011, 2(6): 1095-1100.
[17] Fonsatti E, Nicolay HJ, Altomonte M, et al. Targeting cancer vasculature via endoglin/CD105: a novel antibodybased diagnostic and therapeutic strategy in solid tumours[J]. Cardiovasc Res, 2010, 86(1): 12-19.
[18] Bussolati B, Dekel B, Azzarone B, et al. Human renal cancer stem cells[J]. Cancer Lett, 2013, 338(1): 141-146.
[19] Bussolati B, Bruno S, Grange C, et al. Identification of a tumorinitiating stem cell population in human renal carcinomas[J]. FASEB J, 2008, 22(10): 3696-3705.
[20] Dubinski W, Gabril M, Iakovlev VV, et al. Assessment of the prognostic significance of endoglin (CD105) in clear cell renal cell carcinoma using automated image analysis[J]. Hum Pathol, 2012, 43(7): 1037-1043.
[21] Huang B, Huang YJ, Yao ZJ, et al. Cancer stem celllike side population cells in clear cell renal cell carcinoma cell line 769P[J]. PLoS One, 2013, 8(7): e68293.
[22] Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo[J]. J Exp Med, 1996, 183(4): 1797-1806.
[23] Nishizawa S, Hirohashi Y, Torigoe T, et al. HSP DNAJB8 controls tumorinitiating ability in renal cancer stemlike cells[J]. Cancer Res, 2012, 72(11): 2844-2854.
[24] Lu J, Cui Y, Zhu J, et al. Biological characteristics of Rh123high stem like cells in a side population of 786O renal carcinoma cells[J]. Oncol Lett, 2013, 5(6): 1903-1908.
[25] Ratajczak MZ, ZubaSurma E, Kucia M, et al. The pleiotropic effects of the SDF1CXCR4 axis in organogenesis, regeneration and tumorigenesis[J]. Leukemia, 2006, 20(11): 1915-1924.
[26] Gassenmaier M, Chen D, Buchner A, et al. CXC chemokine receptor 4 is essential for maintenance of renal cell carcinomainitiating cells and predicts metastasis[J]. Stem Cells, 2013, 31(8): 1467-1476.
[27] Cojoc M, Peitzsch C, Trautmann F, et al. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis[J]. Onco Targets Ther, 2013, 6: 1347-1361.
[28] Wend P, Holland JD, Ziebold U, et al. Wnt signaling in stem and cancer stem cells[J]. Semin Cell Dev Biol, 2010, 21(8): 855-863.
[29] Saito N, Fu J, Zheng S, et al. A high notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumorinitiating cells[J]. Stem Cells, 2014, 32(1): 301-312.
[30] Bartucci M, Dattilo R, Moriconi C, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells[J]. Oncogene, 2014, In press. |