[1] Theiry JP, Acloque H, Huang RY, et al. Epithelialmesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890.
[2] Liu Y. New insights into epithelialmesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010, 21(2):212-222.
[3] LópezNovoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression[J]. EMBO Mol Med, 2009, 1(6-7):303-314.
[4] Sun T, Zhao N, Zhao XL, et al. Expression and functional significance of twist1 in hepatocellular carcinoma:its role in vasculogenic mimicry[J]. Hepatology, 2010, 51(2):545-556.
[5] Sabe H. Cancer early dissemination:cancerous epithelial mesenchymal transdifferentiation and transforming growth factor β signaling[J]. J Biochem, 2011, 149(6):633-639.
[6] Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic[J]. Biochim Biophys Acta, 2009, 1796(2):75-90.
[7] Meng X, Ezzati P, Wilkins JA. Requirement of podocalyxin in TGF-beta induced epithelial mesenchymal transition[J]. PLoS One, 2011, 6(4):e18715.
[8] Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions[J]. Int J Oncol, 2010, 37(3):663-668.
[9] Li QQ, Xu JD, Wang WJ, et al. Twist1-mediated Adriamycin-induced epithelialmesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells[J]. Clin Cancer Res, 2009, 15(8):2657-2665.
[10] Rosanò L, Cianfrocca R, Spinella F, et al. Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells[J]. Clin Cancer Res, 2011, 17(8):2350-2360.
[11] Davalos V, Moutinho C, Villanueva A, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis[J]. Oncogene, 2012, 31(16):2062-2074.
[12] Natalwala A, Spychal R, Tselepis C. Epithelial-mesenchyrreal transition mediated tumourigenesis in the gastrointestinal tract[J]. World J Gastroenterol, 2008, 14(24):3792-3797.
[13] Ungefroren H, Groth S, Sebens S, et al. Differential roles of Smad2 and Smad3 in the regulation of TGF-β1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1[J]. Mol Cancer, 2011, 10:67.
[14] Veerasamy M, Phanish M, Dockrell ME. Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells[J]. PLoS One, 2013, 8(1):e51842.
[15] Chitalia V, Shivanna S, Martorell J, et al. cCbl, a ubiquitin E3 ligase that targets active β-catenin: a novel layer of Wnt signaling regulation[J]. J Biol Chem, 2013, 288(32):23505-23517.
[16] Zhao JH, Luo Y, Jiang YG, et al. Knockdown of β-Catenin through shRNA cause a reversal of EMT and metastaic phenotypes induced by HIF-1α[J]. Cancer Invest, 2011, 29(6):377-382.
[17] Mao Y, Xu J, Li Z, et al. The Role of Nuclear β-Catenin Accumulation in the Twist2Induced Ovarian Cancer EMT[J]. PLoS One, 2013, 8(11):e78200.
[18] Kamino M, Kishida M, Kibe T, et al. Wnt-5a signaling is correlated with infiltrative activity in human glioma by inducing cellular migration and MMP-2[J]. Cancer Sci, 2011, 102(3):540548.
[19] Kessenbrock K, Dijkgraaf GJ, Lawson DA, et al. A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway[J]. Cell Stem Cell, 2013, 13(3):300-313.
[20] Dey N, Young B, Abramovitz M, et al. Differential activation of Wnt-β-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner[J]. PLoS One, 2013, 8(10):e77425.
[21] Prasad CP, Chaurasiya SK, Axelsson L, et al. WNT-5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells[J]. Mol Oncol, 2013, 7(5):870-883.
[22] Li Y, Ma J, Qian X, et al. Regulation of EMT by Notch Signaling Pathway in Tumor Progression[J]. Curr Cancer Drug Targets, 2013, 13(9):957-962.
[23] Wang T, Xuan X, Pian L, et al. Notch-1-mediated esophageal carcinoma EC-9706 cell invasion and metastasis by inducing epithelial-mesenchymal transition through Snail[J]. Tumour Biol, 2013, In press.
[24] Bao B, Wang Z, Ali S, et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells[J]. Cancer Lett, 2011, 307(1):26-36.
[25] Makinodan E, Marneros AG. Protein kinase A activation inhibits oncogenic Sonic hedgehog signalling and suppresses basal cell carcinoma of the skin[J]. Exp Dermatol, 2012, 21(11):847-852.
[26] Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449[J]. N Engl J Med, 2009, 361(12):1173-1178.
[27] Choe C, Shin YS, Kim SH, et al. Tumor-stromal interactions with direct cell contacts enhance motility of non-small cell lung cancer cells through the hedgehog signaling pathway[J]. Anticancer Res, 2013, 33(9):3715-3723.
[28] Isohata N, Aoyagi K, Mabuchi T, et al. Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus[J]. Int J Cancer, 2009, 125(5):1212-1221.
[29] Chen JH, Wu H, Ma JP, et al. Effects of inhibition of Hedgehog signaling pathway for transforming growth factor-β-induced epithelial-mesenchymal transition[J]. Zhonghua Yi Xue Za Zhi, 2013, 93(26):2075-2078.
[30] Lei J, Ma J, Ma Q, et al. Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligandindependent manner[J]. Mol Cancer, 2013, 12:66.
[31] Ten Haaf A, Bektas N, Von Serenyi S, et al. Expression of the gliomaassociated oncogene homolog(GLI) 1 in human breast cancer is associated with unfavourable overall survival[J]. BMC Cancer, 2009, 9:2-12.
[32] Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis,cell invasion and differentiation[J]. Carcinogenesis, 2009, 30(1):131-140.
[33] Keysar SB, Le PN, Anderson RT, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer[J]. Cancer Res, 2013, 73(11):3381-3392.
[34] Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer[J]. Science, 2009, 324(5933):1457-1461.
[35] Inaguma S, Kasai K, Ikeda H. GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin[J]. Oncogene, 2011, 30(6):714-723.
[36] Hong KO, Kim JH, Hong JS, et al. Inhibition of Akt activity induces the mesenchymaltoepithelial reverting transition with restoring E-cadherin expression in KB and KOSCC25B oral squamous cell carcinoma cells[J]. J Exp Clin Cancer Res, 2009, 28:28.
[37] Yoo YA, Kang MH, Lee HJ, et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP9 pathway in gastric cancer[J]. Cancer Res, 2011, 71(22):7061-7070.
[38] Lin CY, Tsai PH, Kandaswami CC, et al. Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells[J]. Mol Cancer, 2011, 10:87.
[39] Srivastava R K, Kurzrock R, Shankar S. MS-275 sensitizes TRAILresistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo[J]. Mol Cancer Ther, 2010, 9(12):3254-3266.
[40] Yeasmin S, Nakayama K, Rahman MT, et al. Loss of MKK4 expression in ovarian cancer:a potential role for the epithelial to mesenchymal transition[J]. Int J Cancer, 2011, 128(1):94104.
[41] Shao M, Cao L, Shen C, et al. Epithelial-to-mesenchymal transition and ovarian tumor progression induced by tissue transglutaminase[J]. Cancer Res, 2009, 69(24):9192-9201.
[42] Chua HL, BhatNakshatri P, Clare SE, et al. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:potential involvement of ZEB-1and ZEB-2[J]. Oncogene, 2007, 26(5):711-724.
[43] Guo G, Yao W, Zhang Q, et al. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway[J]. PLoS One, 2013, 8(8):e72079.
[44] 唐勇, 王辉, 陈伟娟, 等. EMT经p38-MAPK调节乳腺癌MCF-7细胞P-gp介导的多药耐药[J]. 中国肿瘤生物治疗杂志, 2010, 17(2):144-148.
[45] Zhou X, Zhang Y, Han N, et al. α-Enolase (ENO1) inhibits epithelial-mesenchymal transition in the A549 cell line by suppressing ERK1/2 phosphorylation[J]. Zhongguo Fei Ai Za Zhi, 2013, 16(5):221-226. |