国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (3): 179-182.doi: 10.3760/cma.j.cn371439-20230105-00035
收稿日期:
2023-01-05
修回日期:
2023-01-14
出版日期:
2023-03-08
发布日期:
2023-04-12
通讯作者:
贾军梅,Email: Wang Yaqian1, Du Yiwei1, Wang Xing1, Jia Junmei2()
Received:
2023-01-05
Revised:
2023-01-14
Online:
2023-03-08
Published:
2023-04-12
Contact:
Jia Junmei, Email: 摘要:
免疫检查点抑制剂的出现为小细胞肺癌患者带来了新的希望。研究发现PD-L1表达、肿瘤突变负荷、基因组特征、外周血指标等可作为接受免疫治疗的小细胞肺癌患者的预后预测指标。进一步探索评估相关预测指标,可为筛选免疫治疗潜在获益患者提供参考。
王雅倩, 杜逸玮, 王兴, 贾军梅. 小细胞肺癌免疫治疗预后预测指标研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 179-182.
Wang Yaqian, Du Yiwei, Wang Xing, Jia Junmei. Prognostic predictors of immunotherapy in patients with small cell lung cancer[J]. Journal of International Oncology, 2023, 50(3): 179-182.
[1] |
Wang S, Zimmermann S, Parikh K, et al. Current diagnosis and management of small-cell lung cancer[J]. Mayo Clin Proc, 2019, 94(8): 1599-1622. DOI: 10.1016/j.mayocp.2019.01.034.
doi: S0025-6196(19)30126-0 pmid: 31378235 |
[2] |
Yin X, Li Y, Wang H, et al. Small cell lung cancer transformation: from pathogenesis to treatment[J]. Semin Cancer Biol, 2022, 86(Pt 2): 595-606. DOI: 10.1016/j.semcancer.2022.03.006.
doi: 10.1016/j.semcancer.2022.03.006 pmid: 35276343 |
[3] |
Rudin CM, Brambilla E, Faivre-Finn C, et al. Small-cell lung cancer[J]. Nat Rev Dis Primers, 2021, 7(1): 3. DOI: 10.1038/s41572-020-00235-0.
doi: 10.1038/s41572-020-00235-0 pmid: 33446664 |
[4] |
Vafaei S, Zekiy AO, Khanamir RA, et al. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier[J]. Cancer Cell Int, 2022, 22(1): 2. DOI: 10.1186/s12935-021-02407-8.
doi: 10.1186/s12935-021-02407-8 pmid: 34980128 |
[5] |
Gadgeel SM, Pennell NA, Fidler MJ, et al. Phase Ⅱ study of maintenance pembrolizumab in patients with extensive-stage small cell lung cancer (SCLC)[J]. J Thorac Oncol, 2018, 13(9): 1393-1399. DOI: 10.1016/j.jtho.2018.05.002.
doi: 10.1016/j.jtho.2018.05.002 |
[6] |
Ricciuti B, Kravets S, Dahlberg SE, et al. Use of targeted next generation sequencing to characterize tumor mutational burden and efficacy of immune checkpoint inhibition in small cell lung cancer[J]. J Immunother Cancer, 2019, 7(1): 87. DOI: 10.1186/s40425-019-0572-6.
doi: 10.1186/s40425-019-0572-6 pmid: 30922388 |
[7] |
Keogh A, Finn S, Radonic T. Emerging biomarkers and the changing landscape of small cell lung cancer[J]. Cancers (Basel), 2022, 14(15): 3772. DOI: 10.3390/cancers14153772.
doi: 10.3390/cancers14153772 |
[8] |
Benitez JC, Recondo G, Rassy E, et al. The LIPI score and inflammatory biomarkers for selection of patients with solid tumors treated with checkpoint inhibitors[J]. Q J Nucl Med Mol Imaging, 2020, 64(2): 162-174. DOI: 10.23736/S1824-4785.20.03250-1.
doi: 10.23736/S1824-4785.20.03250-1 pmid: 32107903 |
[9] |
Lee YJ, Lee JB, Ha SJ, et al. Clinical perspectives to overcome acquired resistance to anti-programmed death-1 and anti-programmed death ligand-1 therapy in non-small cell lung cancer[J]. Mol Cells, 2021, 44(5): 363-373. DOI: 10.14348/molcells.2021.0044.
doi: 10.14348/molcells.2021.0044 pmid: 34001680 |
[10] |
Sun C, Zhang L, Zhang W, et al. Expression of PD-1 and PD-L1 on tumor-infiltrating lymphocytes predicts prognosis in patients with small-cell lung cancer[J]. Onco Targets Ther, 2020, 13: 6475-6483. DOI: 10.2147/OTT.S252031.
doi: 10.2147/OTT.S252031 |
[11] |
Acheampong E, Abed A, Morici M, et al. Tumour PD-L1 expression in small-cell lung cancer: a systematic review and meta-analysis[J]. Cells, 2020, 9(11): 2393. DOI: 10.3390/cells9112393.
doi: 10.3390/cells9112393 |
[12] |
Liu SV, Reck M, Mansfield AS, et al. Updated overall survival and PD-L1 subgroup analysis of patients with extensive-stage small-cell lung cancer treated with atezolizumab, carboplatin, and etoposide (IMpower133)[J]. J Clin Oncol, 2021, 39(6): 619-630. DOI: 10.1200/JCO.20.01055.
doi: 10.1200/JCO.20.01055 pmid: 33439693 |
[13] |
Iams WT, Porter J, Horn L. Immunotherapeutic approaches for small-cell lung cancer[J]. Nat Rev Clin Oncol, 2020, 17(5): 300-312. DOI: 10.1038/s41571-019-0316-z.
doi: 10.1038/s41571-019-0316-z pmid: 32055013 |
[14] |
Tian Y, Zhai X, Han A, et al. Potential immune escape mechanisms underlying the distinct clinical outcome of immune checkpoint blockades in small cell lung cancer[J]. J Hematol Oncol, 2019, 12(1): 67. DOI: 10.1186/s13045-019-0753-2.
doi: 10.1186/s13045-019-0753-2 |
[15] |
Otoshi T, Nagano T, Tachihara M, et al. Possible biomarkers for cancer immunotherapy[J]. Cancers (Basel), 2019, 11(7): 935. DOI: 10.3390/cancers11070935.
doi: 10.3390/cancers11070935 |
[16] |
Sha D, Jin Z, Budczies J, et al. Tumor mutational burden as a predictive biomarker in solid tumors[J]. Cancer Discov, 2020, 10(12): 1808-1825. DOI: 10.1158/2159-8290.CD-20-0522.
doi: 10.1158/2159-8290.CD-20-0522 pmid: 33139244 |
[17] |
Hellmann MD, Callahan MK, Awad MM, et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer[J]. Cancer Cell, 2018, 33(5): 853-861. e4. DOI: 10.1016/j.ccell.2018.04.001.
doi: S1535-6108(18)30172-7 pmid: 29731394 |
[18] |
Kim ES, Velcheti V, Mekhail T, et al. Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial[J]. Nat Med, 2022, 28(5): 939-945. DOI: 10.1038/s41591-022-01754-x.
doi: 10.1038/s41591-022-01754-x |
[19] |
Jardim DL, Goodman A, de Melo Gagliato D, et al. The challenges of tumor mutational burden as an immunotherapy biomarker[J]. Cancer Cell, 2021, 39(2): 154-173. DOI: 10.1016/j.ccell.2020.10.001.
doi: 10.1016/j.ccell.2020.10.001 pmid: 33125859 |
[20] |
Rudin CM, Poirier JT, Byers LA, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data[J]. Nat Rev Cancer, 2019, 19(5): 289-297. DOI: 10.1038/s41568-019-0133-9.
doi: 10.1038/s41568-019-0133-9 pmid: 30926931 |
[21] |
Prisciandaro M, Antista M, Raimondi A, et al. Biomarker landscape in neuroendocrine tumors with high-grade features: current knowledge and future perspective[J]. Front Oncol, 2022, 12: 780716. DOI: 10.3389/fonc.2022.780716.
doi: 10.3389/fonc.2022.780716 |
[22] |
Gay CM, Stewart CA, Park EM, et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities[J]. Cancer Cell, 2021, 39(3): 346-360. e7. DOI: 10.1016/j.ccell.2020.12.014.
doi: 10.1016/j.ccell.2020.12.014 pmid: 33482121 |
[23] |
金莹, 陈亚梅, 胡晓, 等. 循环肿瘤DNA检测小细胞肺癌基因突变的可行性及其预后预测价值分析[J]. 中华医学杂志, 2020, 100(45): 3614-3621. DOI:10.3760/cma.j.cn112137-20200504-01412.
doi: 10.3760/cma.j.cn112137-20200504-01412 |
[24] |
Roper N, Velez MJ, Chiappori A, et al. Notch signaling and efficacy of PD-1/PD-L1 blockade in relapsed small cell lung cancer[J]. Nat Commun, 2021, 12(1): 3880. DOI: 10.1038/s41467-021-24164-y.
doi: 10.1038/s41467-021-24164-y pmid: 34162872 |
[25] |
Hu C, Dong J, Liu L, et al. ASCL1 and DLL3 expressions and their clinicopathological implications in surgically resected pure small cell lung cancer: a study of 247 cases from the National Cancer Center of China[J]. Thorac Cancer, 2022, 13(3): 338-345. DOI: 10.1111/1759-7714.14249.
doi: 10.1111/1759-7714.14249 |
[26] |
Leonetti A, Facchinetti F, Minari R, et al. Notch pathway in small-cell lung cancer: from preclinical evidence to therapeutic challenges[J]. Cell Oncol (Dordr), 2019, 42(3): 261-273. DOI: 10.1007/s13402-019-00441-3.
doi: 10.1007/s13402-019-00441-3 |
[27] |
Tanaka K, Isse K, Fujihira T, et al. Prevalence of delta-like protein 3 expression in patients with small cell lung cancer[J]. Lung Cancer, 2018, 115: 116-120. DOI: 10.1016/j.lungcan.2017.11.018.
doi: S0169-5002(17)30585-8 pmid: 29290251 |
[28] |
Li W, Ye L, Huang Y, et al. Characteristics of notch signaling pathway and its correlation with immune microenvironment in SCLC[J]. Lung Cancer, 2022, 167: 25-33. DOI: 10.1016/j.lungcan.2022.03.019.
doi: 10.1016/j.lungcan.2022.03.019 pmid: 35381444 |
[29] |
Dixon ML, Luo L, Ghosh S, et al. Remodeling of the tumor microenvironment via disrupting Blimp1+ effector Treg activity augments response to anti-PD-1 blockade[J]. Mol Cancer, 2021, 20(1): 150. DOI: 10.1186/s12943-021-01450-3.
doi: 10.1186/s12943-021-01450-3 |
[30] |
Bonanno L, Pavan A, Dieci MV, et al. The role of immune microenvironment in small-cell lung cancer: distribution of PD-L1 expression and prognostic role of FOXP3-positive tumour infiltra-ting lymphocytes[J]. Eur J Cancer, 2018, 101: 191-200. DOI: 10.1016/j.ejca.2018.06.023.
doi: S0959-8049(18)30937-7 pmid: 30077124 |
[31] |
Jiang M, Wu C, Zhang L, et al. FOXP3-based immune risk model for recurrence prediction in small-cell lung cancer at stages Ⅰ-Ⅲ[J]. J Immunother Cancer, 2021, 9(5): e002339. DOI: 10.1136/jitc-2021-002339.
doi: 10.1136/jitc-2021-002339 |
[32] |
Kanemura H, Hayashi H, Tomida S, et al. The tumor immune microenvironment and frameshift neoantigen load determine response to PD-L1 blockade in extensive-stage SCLC[J]. JTO Clin Res Rep, 2022, 3(8): 100373. DOI: 10.1016/j.jtocrr.2022.100373.
doi: 10.1016/j.jtocrr.2022.100373 |
[33] |
Hardy-Werbin M, Rocha P, Arpi O, et al. Serum cytokine levels as predictive biomarkers of benefit from ipilimumab in small cell lung cancer[J]. Oncoimmunology, 2019, 8(6): e1593810. DOI: 10.1080/2162402X.2019.1593810.
doi: 10.1080/2162402X.2019.1593810 |
[34] |
Li L, Pi C, Yan X, et al. Prognostic value of the pretreatment lung immune prognostic index in advanced small cell lung cancer patients treated with first-line PD-1/PD-L1 inhibitors plus chemotherapy[J]. Front Oncol, 2021, 11: 697865. DOI: 10.3389/fonc.2021.697865.
doi: 10.3389/fonc.2021.697865 |
[35] |
Qi WX, Xiang Y, Zhao S, et al. Assessment of systematic inflammatory and nutritional indexes in extensive-stage small-cell lung cancer treated with first-line chemotherapy and atezolizumab[J]. Cancer Immunol Immunother, 2021, 70(11): 3199-3206. DOI: 10.1007/s00262-021-02926-3.
doi: 10.1007/s00262-021-02926-3 |
[36] |
Zhou K, Cao J, Lin H, et al. Prognostic role of the platelet to lymphocyte ratio (PLR) in the clinical outcomes of patients with advanced lung cancer receiving immunotherapy: a systematic review and meta-analysis[J]. Front Oncol, 2022, 12: 962173. DOI: 10.3389/fonc.2022.962173.
doi: 10.3389/fonc.2022.962173 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[4] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[5] | 刘萍萍, 何学芳, 张翼, 杨旭, 张珊珊, 季一飞. 原发性脑胶质瘤患者术后复发危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2024, 51(4): 193-197. |
[6] | 万芳, 杨钢, 李睿, 万启晶. 食管癌患者血清miR-497、miR-383水平及临床意义[J]. 国际肿瘤学杂志, 2024, 51(4): 204-209. |
[7] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[8] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[9] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智. CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[10] | 孙维蔚, 姚学敏, 王鹏健, 王静, 贾敬好. 基于血液学指标探讨免疫治疗晚期非小细胞肺癌预后因素及列线图构建[J]. 国际肿瘤学杂志, 2024, 51(3): 143-150. |
[11] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[12] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[13] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[14] | 彭琴, 蔡玉婷, 王伟. KPNA2在肝癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 181-185. |
[15] | 陈波光, 王苏贵, 张永杰. 血清胆碱酯酶与炎症标志物在ⅠA~ⅢA期乳腺癌预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(2): 73-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||