国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (2): 97-101.doi: 10.3760/cma.j.cn371439-20220719-00020
收稿日期:
2022-07-19
修回日期:
2022-09-25
出版日期:
2023-02-08
发布日期:
2023-03-22
通讯作者:
丁江华,Email:基金资助:
Zhang Bixia1, Ding Jianghua2()
Received:
2022-07-19
Revised:
2022-09-25
Online:
2023-02-08
Published:
2023-03-22
Contact:
Ding Jianghua,Email:Supported by:
摘要:
表皮生长因子受体(EGFR)突变型晚期非小细胞肺癌(NSCLC)既往被认为是一种免疫“冷肿瘤”。然而,最近研究显示EGFR-酪氨酸激酶抑制剂(TKI)治疗可使机体免疫状态从免疫抑制向免疫支持转化,这为免疫治疗带来了新的希望。EGFR突变型NSCLC在发生EGFR-TKI获得性耐药后的免疫治疗策略主要包括4种:单一免疫治疗(Im)、免疫治疗加化疗(Im+C)、免疫治疗加抗血管生成治疗(Im+A)、免疫治疗联合抗血管生成和化疗(Im+A+C)。其中,Im效果显著低于单一化疗,疗效极其有限;而Im+A临床研究很少,尚缺乏证据。Im+C与Im+A+C联合方案的效果显著优于单一化疗,而Im+A+C的疗效较Im+C有明显优势。此外,EGFR L858R突变亚群比EGFR 19del突变亚群从Im+C中获益更大,而T790M阴性亚组较T790M阳性亚组从Im+A+C中获益更大。总之,对于EGFR突变型NSCLC发生EGFR-TKI获得性耐药患者,免疫治疗联合化疗和抗血管生成治疗是一种新的有前景的治疗方法。
张碧霞, 丁江华. EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101.
Zhang Bixia, Ding Jianghua. Immunotherapy for EGFR-mutant non-small cell lung cancer after EGFR-TKI acquired resistance[J]. Journal of International Oncology, 2023, 50(2): 97-101.
[1] |
Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
doi: 10.1097/CM9.0000000000001474 |
[2] |
Lu S, Dong X, Jian H, et al. Aeneas: A randomized phase Ⅲ trial of aumolertinib versus gefitinib as first-line therapy for locally advanced or metastatic non-small-cell lung cancer with EGFR exon 19 deletion or L858R mutations[J]. J Clin Oncol, 2022, 40(27): 3162-3171. DOI: 10.1200/JCO.21.02641.
doi: 10.1200/JCO.21.02641 |
[3] |
Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(2): 113-125. DOI: 10.1056/NEJMoa1713137.
doi: 10.1056/NEJMoa1713137 |
[4] |
Lu S, Fang J, Li X, et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring Met exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study[J]. Lancet Respir Med, 2021, 9(10): 1154-1164. DOI: 10.1016/S2213-2600(21)00084-9.
doi: 10.1016/S2213-2600(21)00084-9 pmid: 34166627 |
[5] |
Soria JC, Wu YL, Nakagawa K, et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial[J]. Lancet Oncol, 2015, 16(8): 990-998. DOI: 10.1016/S1470-2045(15)00121-7.
doi: 10.1016/S1470-2045(15)00121-7 |
[6] |
Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer[J]. N Engl J Med, 2017, 376(7): 629-640. DOI: 10.1056/NEJMoa1612674.
doi: 10.1056/NEJMoa1612674 |
[7] |
Passiglia F, Reale ML, Cetoretta V, et al. Immune-checkpoint inhibitors combinations in metastatic NSCLC: new options on the horizon?[J]. Immunotargets Ther, 2021, 10: 9-26. DOI: 10.2147/ITT.S253581.
doi: 10.2147/ITT.S253581 |
[8] |
Qiao M, Jiang T, Liu X, et al. Immune checkpoint inhibitors in EGFR-mutated NSCLC: dusk or dawn?[J]. J Thorac Oncol, 2021, 16(8): 1267-1288. DOI: 10.1016/j.jtho.2021.04.003.
doi: 10.1016/j.jtho.2021.04.003 |
[9] |
Alwithenani A, Bethune D, Castonguay M, et al. Profiling non-small cell lung cancer reveals that PD-L1 is associated with wild type EGFR and vascular invasion, and immunohistochemistry quantification of PD-L1 correlates weakly with RT-qPCR[J]. PLoS One, 2021, 16(5): e0251080. DOI: 10.1371/journal.pone.0251080.
doi: 10.1371/journal.pone.0251080 |
[10] |
Luo JW, Guo YH, Wu FY, et al. Differences in immunological landscape between EGFR-mutated and wild-type lung adenocarcinoma[J]. Dis Markers, 2021, 2021: 3776854. DOI: 10.1155/2021/3776854.
doi: 10.1155/2021/3776854 |
[11] |
Isomoto K, Haratani K, Hayashi H, et al. Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer[J]. Clin Cancer Res, 2020, 26(8): 2037-2046. DOI: 10.1158/1078-0432.CCR-19-2027.
doi: 10.1158/1078-0432.CCR-19-2027 |
[12] |
Suda K, Rozeboom L, Furugaki K, et al. Increased EGFR phosphorylation correlates with higher programmed death ligand-1 expression: analysis of TKI-resistant lung cancer cell lines[J]. Biomed Res Int, 2017, 2017: 7694202. DOI: 10.1155/2017/7694202.
doi: 10.1155/2017/7694202 |
[13] |
Peng S, Wang R, Zhang X, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression[J]. Mol Cancer, 2019, 18(1): 165. DOI: 10.1186/s12943-019-1073-4.
doi: 10.1186/s12943-019-1073-4 pmid: 31747941 |
[14] |
Liu L, Wang C, Li S, et al. Tumor immune microenvironment in epidermal growth factor receptor-mutated non-small cell lung cancer before and after epidermal growth factor receptor tyrosine kinase inhibitor treatment: a narrative review[J]. Transl Lung Cancer Res, 2021, 10(9): 3823-3839. DOI: 10.21037/tlcr-21-572.
doi: 10.21037/tlcr-21-572 |
[15] |
Reuben A, Zhang J, Chiou SH, et al. Comprehensive T cell repertoire characterization of non-small cell lung cancer[J]. Nat Commun, 2020, 11(1): 603. DOI: 10.1038/s41467-019-14273-0.
doi: 10.1038/s41467-019-14273-0 pmid: 32001676 |
[16] |
Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer[J]. N Engl J Med, 2015, 373(17): 1627-1639. DOI: 10.1056/NEJMoa1507643.
doi: 10.1056/NEJMoa1507643 |
[17] |
Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial[J]. Lancet, 2016, 387(10027): 1540-1550. DOI: 10.1016/S0140-6736(15)01281-7.
doi: S0140-6736(15)01281-7 pmid: 26712084 |
[18] |
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017, 389(10066): 255-265. DOI: 10.1016/S0140-6736(16)32517-X.
doi: S0140-6736(16)32517-X pmid: 27979383 |
[19] |
Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial[J]. Lancet, 2016, 387(10030): 1837-1846. DOI: 10.1016/S0140-6736(16)00587-0.
doi: 10.1016/S0140-6736(16)00587-0 pmid: 26970723 |
[20] |
Lee CK, Man J, Lord S, et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a syste-matic review and meta-analysis[J]. JAMA Oncol, 2018, 4(2): 210-216. DOI: 10.1001/jamaoncol.2017.4427.
doi: 10.1001/jamaoncol.2017.4427 |
[21] |
Garassino MC, Cho BC, Kim JH, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (Atlantic): an open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2018, 19(4): 521-536. DOI: 10.1016/S1470-2045(18)30144-X.
doi: S1470-2045(18)30144-X pmid: 29545095 |
[22] |
Hayashi H, Sugawara S, Fukuda Y, et al. A randomized phase Ⅱ study comparing nivolumab with carboplatin-pemetrexed for EGFR-mutated NSCLC with resistance to EGFR tyrosine kinase inhibitors (WJOG8515L)[J]. Clin Cancer Res, 2022, 28(5): 893-902. DOI: 10.1158/1078-0432.CCR-21-3194.
doi: 10.1158/1078-0432.CCR-21-3194 |
[23] |
Haratani K, Hayashi H, Tanaka T, et al. Tumor immune micro-environment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment[J]. Ann Oncol, 2017, 28(7): 1532-1539. DOI: 10.1093/annonc/mdx183.
doi: 10.1093/annonc/mdx183 pmid: 28407039 |
[24] |
Hastings K, Yu HA, Wei W, et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer[J]. Ann Oncol, 2019, 30(8): 1311-1320. DOI: 10.1093/annonc/mdz141.
doi: S0923-7534(19)31272-4 pmid: 31086949 |
[25] |
Pasello G, Pavan A, Attili I, et al. Real world data in the era of immune checkpoint inhibitors (ICIs): increasing evidence and future applications in lung cancer[J]. Cancer Treat Rev, 2020, 87: 102031. DOI: 10.1016/j.ctrv.2020.102031.
doi: 10.1016/j.ctrv.2020.102031 |
[26] |
Yu X, Li J, Ye L, et al. Real-world outcomes of chemo-anti-angiogenesis versus chemo-immunotherapy combinations in EGFR-mutant advanced non-small cell lung cancer patients after failure of EGFR-TKI therapy[J]. Transl Lung Cancer Res, 2021, 10(9): 3782-3792. DOI: 10.21037/tlcr-21-681.
doi: 10.21037/tlcr-21-681 |
[27] |
Tian T, Yu M, Li J, et al. Front-line ICI-based combination therapy post-TKI resistance may improve survival in NSCLC patients with EGFR mutation[J]. Front Oncol, 2021, 11: 739090. DOI: 10.3389/fonc.2021.739090.
doi: 10.3389/fonc.2021.739090 |
[28] |
Yang L, Hao X, Hu X, et al. Superior efficacy of immunotherapy-based combinations over monotherapy for EGFR-mutant non-small cell lung cancer acquired resistance to EGFR-TKIs[J]. Thorac Cancer, 2020, 11(12): 3501-3509. DOI: 10.1111/1759-7714.13689.
doi: 10.1111/1759-7714.13689 pmid: 33075201 |
[29] |
Jiang T, Wang P, Zhang J, et al. Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: a multicenter phase-Ⅱ trial[J]. Signal Transduct Target Ther, 2021, 6(1): 355. DOI: 10.1038/s41392-021-00751-9.
doi: 10.1038/s41392-021-00751-9 |
[30] |
Gadgeel S, Diziubek K, Nagasaka M, et al. OA09.03 Pembrolizumab in combination with platinum-based chemotherapy in recurrent EGFR/ALK-positive non-small cell lung cancer (NSCLC)[J]. J Thorac Oncol, 2021, 16(10 Supplement): S863. DOI: 10.1016/j.jtho.2021.08.063.
doi: 10.1016/j.jtho.2021.08.063 |
[31] | ClinicalTrials. gov. Tislelizumab combined with chemotherapy with or without bevacizumab in TKI-resistant EGFR-mutated non-squamous NSCLC[EB/OL]. [2021-11-22][2022-06-19]. . |
[32] |
Choi SH, Yoo SS, Lee SY, et al. Anti-angiogenesis revisited: reshaping the treatment landscape of advanced non-small cell lung cancer[J]. Arch Pharm Res, 2022, 45(4): 263-279. DOI: 10.1007/s12272-022-01382-6.
doi: 10.1007/s12272-022-01382-6 |
[33] |
Liu Y, Zhang T, Zhang L, et al. Combined application of bevacizumab and PD-1 blockade displays durable treatment effects by increasing the infiltration and cytotoxic function of CD8+ T cells in lung cancer[J]. Immunotherapy, 2022, 14(9): 695-708. DOI: 10.2217/imt-2021-0196.
doi: 10.2217/imt-2021-0196 |
[34] |
Chen Y, Yang Z, Wang Y, et al. Pembrolizumab plus chemotherapy or anlotinib vs. pembrolizumab alone in patients with previously treated EGFR-mutant NSCLC[J]. Front Oncol, 2021, 11: 671228. DOI: 10.3389/fonc.2021.671228.
doi: 10.3389/fonc.2021.671228 |
[35] |
Wang P, Fang X, Yin T, et al. Efficacy and safety of anti-PD-1 plus anlotinib in patients with advanced non-small-cell lung cancer after previous systemic treatment failure—a retrospective study[J]. Front Oncol, 2021, 11: 628124. DOI: 10.3389/fonc.2021.628124.
doi: 10.3389/fonc.2021.628124 |
[36] |
Nogami N, Barlesi F, Socinski MA, et al. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain[J]. J Thorac Oncol, 2022, 17(2): 309-323. DOI: 10.1016/j.jtho.2021.09.014.
doi: 10.1016/j.jtho.2021.09.014 |
[37] |
Lam TC, Tsang KC, Choi HC, et al. Combination atezolizumab, bevacizumab, pemetrexed and carboplatin for metastatic EGFR mutated NSCLC after TKI failure[J]. Lung Cancer, 2021, 159: 18-26. DOI: 10.1016/j.lungcan.2021.07.004.
doi: 10.1016/j.lungcan.2021.07.004 pmid: 34303276 |
[38] |
Lu S, Wu L, Jian H. Sintilimab plus bevacizumab biosimilar IBI305 and chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): first interim results from a randomised, double-blind, multicentre, phase 3 trial[J]. Lancet Oncol, 2022, 23(9): 1167-1179. DOI: 10.1016/S1470-2045(22)00382-5.
doi: 10.1016/S1470-2045(22)00382-5 |
[39] |
马丽, 秦娜, 张新勇, 等. EGFR突变晚期非小细胞肺癌患者后线接受免疫治疗的疗效分析[J]. 中国肺癌杂志, 2021, 24(5): 338-344. DOI: 10.3779/j.issn.1009-3419.2021.104.06.
doi: 10.3779/j.issn.1009-3419.2021.104.06 |
[1] | 钱晓涛, 石子宜, 胡格, 吴晓维. Ⅲ~ⅣA期食管鳞状细胞癌放化疗后行巩固化疗的疗效:一项真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(6): 326-331. |
[2] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. |
[3] | 郭泽浩, 张俊旺. PFDN及其亚基在肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2024, 51(6): 350-353. |
[4] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. |
[5] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[6] | 范志鹏, 余静, 胡静, 廖正凯, 徐禹, 欧阳雯, 谢丛华. 炎症标志物的变化趋势对一线接受免疫联合化疗的晚期非小细胞肺癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(5): 257-266. |
[7] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[8] | 顾芳萌, 徐晨阳, 雷大鹏. 人工智能辅助电子喉镜检查在喉癌及喉癌前病变诊治中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 303-307. |
[9] | 张文馨, 夏泠, 彭晋, 周福祥. 甲胎蛋白升高型胃肝样腺癌1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(5): 312-315. |
[10] | 王昆, 周中新, 臧其威. 血清TGF-β1、VEGF水平对非小细胞肺癌患者单孔胸腔镜根治术后复发的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 198-203. |
[11] | 杨毫, 施贵冬, 张程城, 张跃, 张力文, 付茂勇. 信迪利单抗与替雷利珠单抗在进展期食管鳞状细胞癌新辅助治疗中的疗效及安全性对比[J]. 国际肿瘤学杂志, 2024, 51(4): 210-216. |
[12] | 姚益新, 沈煜霖. 血清SOCS3、TXNIP水平对肝细胞癌TACE治疗预后的预测价值[J]. 国际肿瘤学杂志, 2024, 51(4): 217-222. |
[13] | 胡婷婷, 王越华. 电子鼻与线虫鼻——新型早期癌症筛查工具[J]. 国际肿瘤学杂志, 2024, 51(4): 223-226. |
[14] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[15] | 严爱婷, 王翠竹, 刘春桂, 鲁小敏. 卡瑞利珠单抗与信迪利单抗治疗晚期非小细胞肺癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(3): 137-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||