国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (11): 687-691.doi: 10.3760/cma.j.cn371439-20220627-00135
收稿日期:
2022-06-27
修回日期:
2022-09-25
出版日期:
2022-11-08
发布日期:
2022-12-06
通讯作者:
荣光宏
E-mail:rongguanghong@126.com
Cai Jiahui1, Rong Guanghong2()
Received:
2022-06-27
Revised:
2022-09-25
Online:
2022-11-08
Published:
2022-12-06
Contact:
Rong Guanghong
E-mail:rongguanghong@126.com
摘要:
胃癌是我国高发的恶性肿瘤之一。随着肿瘤分子生物学的研究不断深入,分子靶向治疗彰显优势,免疫治疗也备受关注。Yes相关蛋白(YAP)是Hippo通路中起主要作用的效应蛋白,在与细胞核中的转录因子结合后可对细胞的生长起调控作用。近年来较多研究表明YAP的高表达与胃癌的发生、发展和转移密切相关,YAP可能是化疗耐药性的重要靶点,对其深入研究可以为临床治疗提供参考。
蔡甲慧, 荣光宏. YAP在胃癌进展中的作用机制及临床意义[J]. 国际肿瘤学杂志, 2022, 49(11): 687-691.
Cai Jiahui, Rong Guanghong. Mechanism and clinical significance of YAP in the progression of gastric cancer[J]. Journal of International Oncology, 2022, 49(11): 687-691.
[1] |
Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer[J]. CA Cancer J Clin, 2021, 71(3): 264-279. DOI: 10.3322/caac.21657.
doi: 10.3322/caac.21657 |
[2] |
Puliga E, Corso S, Pietrantonio F, et al. Microsatellite instability in gastric cancer: between lights and shadows[J]. Cancer Treat Rev, 2021, 95: 102175. DOI: 10.1016/j.ctrv.2021.102175.
doi: 10.1016/j.ctrv.2021.102175 |
[3] |
Mohajan S, Jaiswal PK, Vatanmakarian M, et al. Hippo pathway: regulation, deregulation and potential therapeutic targets in cancer[J]. Cancer Lett, 2021, 507: 112-123. DOI: 10.1016/j.canlet.2021.03.006.
doi: 10.1016/j.canlet.2021.03.006 pmid: 33737002 |
[4] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
doi: 10.3322/caac.21492 |
[5] |
Masliantsev K, Karayan-Tapon L, Guichet PO. Hippo signaling pathway in gliomas[J]. Cells, 2021, 10(1): 184. DOI: 10.3390/cells10010184.
doi: 10.3390/cells10010184 |
[6] |
Seeneevassen L, Dubus P, Gronnier C, et al. Hippo in gastric cancer: from signalling to therapy[J]. Cancers (Basel), 2022, 14(9): 2282. DOI: 10.3390/cancers14092282.
doi: 10.3390/cancers14092282 |
[7] |
Han T, Cheng Z, Xu M, et al. Yes-associated protein contributes to cell proliferation and migration of gastric cancer via activation of Gli1[J]. Onco Targets Ther, 2020, 13: 10867-10876. DOI: 10.2147/OTT.S266449.
doi: 10.2147/OTT.S266449 |
[8] |
Bie Q, Li X, Liu S, et al. YAP promotes self-renewal of gastric cancer cells by inhibiting expression of L-PTGDS and PTGDR2[J]. Int J Clin Oncol, 2020, 25(12): 2055-2065. DOI: 10.1007/s10147-020-01771-1.
doi: 10.1007/s10147-020-01771-1 |
[9] |
Yuan W, Chen S, Li B, et al. The N6-methyladenosine reader protein YTHDC2 promotes gastric cancer progression via enhancing YAP mRNA translation[J]. Transl Oncol, 2022, 16: 101308. DOI: 10.1016/j.tranon.2021.101308.
doi: 10.1016/j.tranon.2021.101308 |
[10] |
Qiu T, Zhang D, Xu J, et al. Yes-associated protein gene over-expression regulated by β-catenin promotes gastric cancer cell tumo-rigenesis[J]. Technol Health Care, 2022, 30(S1): 425-440. DOI: 10.3233/THC-THC228039.
doi: 10.3233/THC-THC228039 |
[11] |
Yan H, Qiu C, Sun W, et al. Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy[J]. Oncol Rep, 2018, 39(4): 1671-1681. DOI: 10.3892/or.2018.6252.
doi: 10.3892/or.2018.6252 pmid: 29436693 |
[12] |
Liu H, Mei D, Xu P, et al. YAP promotes gastric cancer cell survival and migration/invasion via the ERK/endoplasmic reticulum stress pathway[J]. Oncol Lett, 2019, 18(6): 6752-6758. DOI: 10.3892/ol.2019.11049.
doi: 10.3892/ol.2019.11049 pmid: 31807184 |
[13] |
Jiang L, Wang W, Li Z, et al. NUPR1 participates in YAP-mediate gastric cancer malignancy and drug resistance via AKT and p21 activation[J]. J Pharm Pharmacol, 2021, 73(6): 740-748. DOI: 10.1093/jpp/rgab010.
doi: 10.1093/jpp/rgab010 pmid: 33793788 |
[14] |
Kim E, Ahn B, Oh H, et al. High Yes-associated protein 1 with concomitant negative LATS1/2 expression is associated with poor prognosis of advanced gastric cancer[J]. Pathology, 2019, 51(3): 261-267. DOI: 10.1016/j.pathol.2019.01.001.
doi: 10.1016/j.pathol.2019.01.001 |
[15] |
Wang H, Di X, Bi Y, et al. Long non-coding RNA LINC00649 regulates YES-associated protein 1 (YAP1)/Hippo pathway to accelerate gastric cancer (GC) progression via sequestering miR-16-5p[J]. Bioengineered, 2021, 12(1): 1791-1802. DOI: 10.1080/21655979.2021.1924554.
doi: 10.1080/21655979.2021.1924554 pmid: 33975517 |
[16] |
Molina-Castro SE, Tiffon C, Giraud J, et al. The hippo kinase LATS2 controls helicobacter pylori-induced epithelial-mesenchymal transition and intestinal metaplasia in gastric mucosa[J]. Cell Mol Gastroenterol Hepatol, 2020, 9(2): 257-276. DOI: 10.1016/j.jcmgh.2019.10.007.
doi: S2352-345X(19)30143-2 pmid: 31669263 |
[17] |
Giraud J, Molina-Castro S, Seeneevassen L, et al. Verteporfin targeting YAP1/TAZ-TEAD transcriptional activity inhibits the tumorigenic properties of gastric cancer stem cells[J]. Int J Cancer, 2020, 146(8): 2255-2267. DOI: 10.1002/ijc.32667.
doi: 10.1002/ijc.32667 pmid: 31489619 |
[18] |
Gao J, Zhang Y, Chen H, et al. Computational insights into the interaction mechanism of transcription cofactor vestigial-like protein 4 binding to TEA domain transcription factor 4 by molecular dynamics simulation and molecular mechanics generalized Born/surface area calculation[J]. J Biomol Struct Dyn, 2019, 37(10): 2538-2545. DOI: 10.1080/07391102.2018.1491889.
doi: 10.1080/07391102.2018.1491889 |
[19] |
Jiao S, Guan J, Chen M, et al. Targeting IRF3 as a YAP agonist therapy against gastric cancer[J]. J Exp Med, 2018, 215(2): 699-718. DOI: 10.1084/jem.20171116.
doi: 10.1084/jem.20171116 |
[20] |
Chuang LSH, Ito Y. The multiple interactions of RUNX with the Hippo-YAP pathway[J]. Cells, 2021, 10(11): 2925. DOI: 10.3390/cells10112925.
doi: 10.3390/cells10112925 |
[21] |
Tang Y, Fang G, Guo F, et al. Selective inhibition of STRN3-containing PP2A phosphatase restores hippo tumor-suppressor activity in gastric cancer[J]. Cancer Cell, 2020, 38(1): 115-128.e9. DOI: 10.1016/j.ccell.2020.05.019.
doi: S1535-6108(20)30269-5 pmid: 32589942 |
[22] |
Seeneevassen L, Giraud J, Molina-Castro S, et al. Leukaemia inhibitory factor (LIF) inhibits cancer stem cells tumorigenic pro-perties through hippo kinases activation in gastric cancer[J]. Cancers (Basel), 2020, 12(8): 2011. DOI: 10.3390/cancers12082011.
doi: 10.3390/cancers12082011 |
[23] |
Wang Q, Lu P, Wang T, et al. Sitagliptin affects gastric cancer cells proliferation by suppressing melanoma-associated antigen-A3 expression through Yes-associated protein inactivation[J]. Cancer Med, 2020, 9(11): 3816-3828. DOI: 10.1002/cam4.3024.
doi: 10.1002/cam4.3024 |
[24] |
Chen T, Zhao L, Chen S, et al. The curcumin analogue WZ35 affects glycolysis inhibition of gastric cancer cells through ROS-YAP-JNK pathway[J]. Food Chem Toxicol, 2020, 137: 111131. DOI: 10.1016/j.fct.2020.111131.
doi: 10.1016/j.fct.2020.111131 |
[25] |
Liu Q, Xia H, Zhou S, et al. Simvastatin inhibits the malignant behaviors of gastric cancer cells by simultaneously suppressing YAP and β-catenin signaling[J]. Onco Targets Ther, 2020, 13: 2057-2066. DOI: 10.2147/OTT.S237693.
doi: 10.2147/OTT.S237693 |
[26] |
Chao J, Fuchs CS, Shitara K, et al. Pembrolizumab (pembro) in microsatellite instability-high (MSI-H) advanced gastric/gastroesophageal junction (G/GEJ) cancer by line of therapy[J]. J Clin Oncol, 2020, 38(4_suppl): 430. DOI: 10.1200/JCO.2020.38.4_suppl.430.
doi: 10.1200/JCO.2020.38.4_suppl.430 |
[27] |
Fuchs CS, Özgüroğlu M, Bang YJ, et al. Pembrolizumab versus paclitaxel for previously treated PD-L1-positive advanced gastric or gastroesophageal junction cancer: 2-year update of the randomized phase 3 KEYNOTE-061 trial[J]. Gastric Cancer, 2022, 25(1): 197-206. DOI: 10.1007/s10120-021-01227-z.
doi: 10.1007/s10120-021-01227-z |
[28] |
Hsu PC, Miao J, Wang YC, et al. Inhibition of yes-associated protein down-regulates PD-L1 (CD274) expression in human malignant pleural mesothelioma[J]. J Cell Mol Med, 2018, 22(6): 3139-3148. DOI: 10.1111/jcmm.13593.
doi: 10.1111/jcmm.13593 |
[29] |
Yu M, Peng Z, Qin M, et al. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation[J]. Mol Cell, 2021, 81(6): 1216-1230.e9. DOI: 10.1016/j.molcel.2021.01.010.
doi: 10.1016/j.molcel.2021.01.010 pmid: 33606996 |
[30] |
Ge S, Xia X, Ding C, et al. A proteomic landscape of diffuse-type gastric cancer[J]. Nat Commun, 2018, 9(1): 1012. DOI: 10.1038/s41467-018-03121-2.
doi: 10.1038/s41467-018-03121-2 pmid: 29520031 |
[31] |
Guo X, Zhao Y, Yan H, et al. Single tumor-initiating cells evade immune clearance by recruiting type Ⅱ macrophages[J]. Genes Dev, 2017, 31(3): 247-259. DOI: 10.1101/gad.294348.116.
doi: 10.1101/gad.294348.116 |
[32] |
Zhang K, Li J, Shi Z, et al. Ginsenosides regulates innate immunity to affect immune microenvironment of AIH through Hippo-YAP/TAZ signaling pathway[J]. Front Immunol, 2022, 13: 851560. DOI: 10.3389/fimmu.2022.851560.
doi: 10.3389/fimmu.2022.851560 |
[33] |
Wang J, Huang F, Shi Y, et al. RP11-323N12.5 promotes the malignancy and immunosuppression of human gastric cancer by increasing YAP1 transcription[J]. Gastric Cancer, 2021, 24(1): 85-102. DOI: 10.1007/s10120-020-01099-9.
doi: 10.1007/s10120-020-01099-9 |
[34] |
Koo JH, Guan KL. Interplay between YAP/TAZ and metabolism[J]. Cell Metab, 2018, 28(2): 196-206. DOI: 10.1016/j.cmet.2018.07.010.
doi: S1550-4131(18)30453-4 pmid: 30089241 |
[35] |
Yong J, Li Y, Lin S, et al. Inhibitors targeting YAP in gastric cancer: current status and future perspectives[J]. Drug Des Devel Ther, 2021, 15: 2445-2456. DOI: 10.2147/DDDT.S308377.
doi: 10.2147/DDDT.S308377 |
[36] |
Jang JW, Kim MK, Bae SC. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the small GTPase pathway[J]. Small GTPases, 2020, 11(4): 280-288. DOI: 10.1080/21541248.2018.1435986.
doi: 10.1080/21541248.2018.1435986 |
[1] | 袁健, 黄燕华. Hp-IgG抗体联合血清DKK1、sB7-H3对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(6): 338-343. |
[2] | 杨琳, 路宁, 温华, 张明鑫, 朱琳. 炎症负荷指数与胃癌临床关系研究[J]. 国际肿瘤学杂志, 2024, 51(5): 274-279. |
[3] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[4] | 刘玉兰, 井海燕, 孙静, 宋伟, 沙丹. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. |
[5] | 邵慧芳, 王学红, 芦永福. CST1在胃癌进展中的作用机制及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 489-492. |
[6] | 朱思雨, 王学红, 李文茜, 刘曙. 胃癌患者血清FABP1水平及其与幽门螺杆菌感染的关系[J]. 国际肿瘤学杂志, 2023, 50(6): 336-341. |
[7] | 杨娅, 王慧礼, 刘艳, 郭金凤, 王春霞, 吕敏, 山长平. GCSH基因在胃癌SNU-1细胞增殖和凋亡中的作用研究[J]. 国际肿瘤学杂志, 2023, 50(5): 257-262. |
[8] | 全祯豪, 徐飞鹏, 黄哲, 黄先进, 陈日红, 孙开裕, 胡旭, 林琳. 沉默lncRNA FTX通过miR-22-3p/NLRP3炎症体通路抑制胃癌细胞增殖[J]. 国际肿瘤学杂志, 2023, 50(4): 202-207. |
[9] | 姬薇, 关泉林, 陈雅蕊, 焦福智, 罗倩文. 血脂水平与胃癌的相关性[J]. 国际肿瘤学杂志, 2023, 50(3): 183-185. |
[10] | 范珊琳, 汪品秀, 孔飞, 周玉洁, 袁文臻. 胃癌新辅助化疗后肿瘤退缩分级预测因素的研究进展[J]. 国际肿瘤学杂志, 2023, 50(2): 112-116. |
[11] | 杨俊, 李荣, 曾建昌. 复方苦参注射液联合SOX方案治疗老年晚期胃癌的临床疗效[J]. 国际肿瘤学杂志, 2023, 50(2): 82-86. |
[12] | 邓莉莉, 段星宇, 李保中. HER2靶向药物及其联合治疗方案在胃及食管胃结合部腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 751-757. |
[13] | 李佳宜, 王跃, 尚兰兰, 徐兴, 赵岩. 人工智能技术在胃癌诊断与治疗中的实践与展望[J]. 国际肿瘤学杂志, 2023, 50(11): 677-682. |
[14] | 于晓鹏, 冯青青, 赵文飞, 赵文文, 魏红梅. 靶向治疗联合免疫检查点抑制剂在HER2阳性进展期胃癌中的应用[J]. 国际肿瘤学杂志, 2023, 50(10): 631-635. |
[15] | 李立立, 安有志, 王艳军. 替雷利珠单抗治疗MSI-H局部晚期胃癌患者1例[J]. 国际肿瘤学杂志, 2022, 49(7): 444-446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||