国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (1): 61-64.doi: 10.3760/cma.j.cn371439-20210520-00009
• 综述 • 上一篇
收稿日期:
2021-05-20
修回日期:
2021-08-11
出版日期:
2022-01-08
发布日期:
2022-01-17
通讯作者:
王焱
E-mail:drwangyan@163.com
基金资助:
Hong Anlan, Cao Meng, Wang Yan(), Fang Fang
Received:
2021-05-20
Revised:
2021-08-11
Online:
2022-01-08
Published:
2022-01-17
Contact:
Wang Yan
E-mail:drwangyan@163.com
Supported by:
摘要:
近年来,长非编码RNA(lncRNA)作为竞争性内源RNA(ceRNA)在黑色素瘤中的研究日益增多。lncRNA在黑色素瘤中呈现高表达或低表达,并通过ceRNA机制竞争性地与miRNA结合,影响miRNA下游靶基因mRNA的表达,从而发挥癌基因或抑癌基因的作用。了解lncRNA作为ceRNA在黑色素瘤中的作用,可为未来黑色素瘤的诊断及治疗靶点研究提供新思路。
洪安澜, 曹蒙, 王焱, 方方. 长非编码RNA作为竞争性内源RNA在黑色素瘤中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(1): 61-64.
Hong Anlan, Cao Meng, Wang Yan, Fang Fang. Research progress on lncRNAs as members of ceRNA network in melanoma[J]. Journal of International Oncology, 2022, 49(1): 61-64.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1):7-30. DOI: 10.3322/caac.21590.
doi: 10.3322/caac.21590 |
[2] |
Riefolo M, Porcellini E, Dika E, et al. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces[J]. Mol Oncol, 2019, 13(1):74-98. DOI: 10.1002/1878-0261.12412.
doi: 10.1002/1878-0261.12412 pmid: 30499222 |
[3] |
Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways[J]. Cancer Cell, 2016, 29(4):452-463. DOI: 10.1016/j.ccell.2016.03.010.
doi: S1535-6108(16)30092-7 pmid: 27070700 |
[4] |
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypojournal: the rosetta stone of a hidden RNA language?[J]. Cell, 2011, 146(3):353-358. DOI: 10.1016/j.cell.2011.07.014.
doi: 10.1016/j.cell.2011.07.014 |
[5] |
Yu X, Zheng H, Tse G, et al. Long non-coding RNAs in melanoma[J]. Cell Prolif, 2018, 51(4):e12457. DOI: 10.1111/cpr.12457.
doi: 10.1111/cpr.12457 |
[6] |
Luan W, Li R, Liu L, et al. Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p[J]. Oncotarget, 2017, 8(49):85401-85414. DOI: 10.18632/oncotarget.19910.
doi: 10.18632/oncotarget.19910 |
[7] |
Cantile M, Scognamiglio G, Marra L, et al. HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease[J]. J Cell Physiol, 2017, 232(12):3422-3432. DOI: 10.1002/jcp.25789.
doi: 10.1002/jcp.25789 pmid: 28067428 |
[8] |
Wang P, Hu L, Fu G, et al. LncRNA MALAT1 promotes the proli-feration, migration, and invasion of melanoma cells by downregulating miR-23a[J]. Cancer Manag Res, 2020, 12:6553-6562. DOI: 10.2147/CMAR.S249348.
doi: 10.2147/CMAR.S249348 pmid: 32801893 |
[9] |
Li F, Li X, Qiao L, et al. MALAT1 regulates miR-34a expression in melanoma cells[J]. Cell Death Dis, 2019, 10(6):389. DOI: 10.1038/s41419-019-1620-3.
doi: 10.1038/s41419-019-1620-3 |
[10] |
Sun Y, Cheng H, Wang G, et al. Deregulation of miR-183 promotes melanoma development via lncRNA MALAT1 regulation and ITGB1 signal activation[J]. Oncotarget, 2017, 8(2):3509-3518. DOI: 10.18632/oncotarget.13862.
doi: 10.18632/oncotarget.13862 |
[11] |
Han C, Tang F, Chen J, et al. Knockdown of lncRNA-UCA1 inhi-bits the proliferation and migration of melanoma cells through modulating the miR-28-5p/HOXB3 axis[J]. Exp Ther Med, 2019, 17(5):4294-4302. DOI: 10.3892/etm.2019.7421.
doi: 10.3892/etm.2019.7421 |
[12] |
Chen X, Gao J, Yu Y, et al. Long non-coding RNA UCA1 targets miR-185-5p and regulates cell mobility by affecting epithelial-mesenchymal transition in melanoma via Wnt/β-catenin signaling pathway[J]. Gene, 2018, 676:298-305. DOI: 10.1016/j.gene.2018.08.065.
doi: 10.1016/j.gene.2018.08.065 |
[13] |
Wei Y, Sun Q, Zhao L, et al. LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma[J]. Med Oncol, 2016, 33(8):88. DOI: 10.1007/s12032-016-0804-2.
doi: 10.1007/s12032-016-0804-2 |
[14] |
Chen X, Gao G, Liu S, et al. Long noncoding RNA PVT1 as a novel diagnostic biomarker and therapeutic target for melanoma[J]. Biomed Res Int, 2017, 2017:7038579. DOI: 10.1155/2017/7038579.
doi: 10.1155/2017/7038579 |
[15] |
Wang BJ, Ding HW, Ma GA. Long noncoding RNA PVT1 promotes melanoma progression via endogenous sponging miR-26b[J]. Oncol Res, 2018, 26(5):675-681. DOI: 10.3727/096504017X-14920318811730.
doi: 10.3727/096504017X-14920318811730 |
[16] |
Zhou H, Sun L, Wan F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells[J]. Oncol Lett, 2019, 18(5):4393-4402. DOI: 10.3892/ol.2019.10848.
doi: 10.3892/ol.2019.10848 pmid: 31611948 |
[17] |
Liu W, Feng Q, Liao W, et al. TUG1 promotes the expression of IFITM3 in hepatocellular carcinoma by competitively binding to miR-29a[J]. J Cancer, 2021, 12:6905-6920. DOI: 10.7150/jca.57477.
doi: 10.7150/jca.57477 |
[18] |
Yuan JB, Gu L, Chen L, et al. Annexin A8 regulated by lncRNA-TUG1/miR-140-3p axis promotes bladder cancer progression and metastasis[J]. Mol Ther Oncolytics, 2021, 22:36-51. DOI: 10.1016/j.omto.2021.04.008.
doi: 10.1016/j.omto.2021.04.008 |
[19] |
Liu Q, Zhang W, Luo L, et al. Long noncoding RNA TUG1 regulates the progression of colorectal cancer through miR-542-3p/TRIB2 axis and Wnt/β-catenin pathway[J]. Diagn Pathol, 2021, 16(1):47. DOI: 10.1186/s13000-021-01101-7.
doi: 10.1186/s13000-021-01101-7 |
[20] |
Wang Y, Liu G, Ren L, et al. Long non-coding RNA TUG1 recruits miR-29c-3p from its target gene RGS1 to promote proliferation and metastasis of melanoma cells[J]. Int J Oncol, 2019, 54(4):1317-1326. DOI: 10.3892/ijo.2019.4699.
doi: 10.3892/ijo.2019.4699 |
[21] |
Long J, Menggen Q, Wuren Q, et al. Long noncoding RNA taurine-upregulated gene1 (TUG1) promotes tumor growth and metastasis through TUG1/miR-129-5p/astrocyte-elevated gene-1 (AEG-1) axis in malignant melanoma[J]. Med Sci Monit, 2018, 24:1547-1559. DOI: 10.12659/msm.906616.
doi: 10.12659/msm.906616 |
[22] |
Fan J, Kang X, Zhao L, et al. Long noncoding RNA CCAT1 functions as a competing endogenous RNA to upregulate ITGA9 by sponging miR-296-3p in melanoma[J]. Cancer Manag Res, 2020, 12:4699-4714. DOI: 10.2147/CMAR.S252635.
doi: 10.2147/CMAR.S252635 |
[23] |
Lv L, Jia JQ, Chen J. The lncRNA CCAT1 upregulates proliferation and invasion in melanoma cells via suppressing miR-33a[J]. Oncol Res, 2018, 26(2):201-208. DOI: 10.3727/096504017X1-4920318811749.
doi: 10.3727/096504017X1-4920318811749 |
[24] |
Pan B, Lin X, Zhang L, et al. Long noncoding RNA X-inactive specific transcript promotes malignant melanoma progression and oxaliplatin resistance[J]. Melanoma Res, 2019, 29(3):254-262. DOI: 10.1097/CMR.0000000000000560.
doi: 10.1097/CMR.0000000000000560 |
[25] |
Tian K, Sun D, Chen M, et al. Long noncoding RNA X-inactive specific transcript facilitates cellular functions in melanoma via miR-139-5p/ROCK1 pathway[J]. Onco Targets Ther, 2020, 13:1277-1287. DOI: 10.2147/OTT.S225661.
doi: 10.2147/OTT.S225661 |
[26] |
Ma MH, An JX, Zhang C, et al. ZEB1-AS1 initiates a miRNA-mediated ceRNA network to facilitate gastric cancer progression[J]. Cancer Cell Int, 2019, 19:27. DOI: 10.1186/s12935-019-0742-0.
doi: 10.1186/s12935-019-0742-0 |
[27] |
Xia W, Jie W. ZEB1-AS1/miR-133a-3p/LPAR3/EGFR axis promotes the progression of thyroid cancer by regulating PI3K/AKT/mTOR pathway[J]. Cancer Cell Int, 2020, 20:94. DOI: 10.1186/s12935-020-1098-1.
doi: 10.1186/s12935-020-1098-1 pmid: 32231464 |
[28] |
Wang Q, Zhang R, Liu D. Long non-coding RNA ZEB1-AS1 indicates poor prognosis and promotes melanoma progression through targeting miR-1224-5p[J]. Exp Ther Med, 2019, 17(1):857-862. DOI: 10.3892/etm.2018.7005.
doi: 10.3892/etm.2018.7005 |
[29] |
Siena ÁDD, Plaça JR, Araújo LF, et al. Whole transcriptome analysis reveals correlation of long noncoding RNA ZEB1-AS1 with invasive profile in melanoma[J]. Sci Rep, 2019, 9(1):11350. DOI: 10.1038/s41598-019-47363-6.
doi: 10.1038/s41598-019-47363-6 |
[30] |
Moradi MT, Fallahi H, Rahimi Z. Interaction of long noncoding RNA MEG3 with miRNAs: a reciprocal regulation[J]. J Cell Biochem, 2019, 120(3):3339-3352. DOI: 10.1002/jcb.27604.
doi: 10.1002/jcb.27604 |
[31] |
Al-Rugeebah A, Alanazi M, Parine NP. MEG3: an oncogenic long non-coding RNA in different cancers[J]. Pathol Oncol Res, 2019, 25(3):859-874. DOI: 10.1007/s12253-019-00614-3.
doi: 10.1007/s12253-019-00614-3 pmid: 30793226 |
[32] |
Long J, Pi X. lncRNA-MEG3 suppresses the proliferation and invasion of melanoma by regulating CYLD expression mediated by sponging miR-499-5p[J]. Biomed Res Int, 2018, 2018:2086564. DOI: 10.1155/2018/2086564.
doi: 10.1155/2018/2086564 |
[33] |
Wu L, Zhu L, Li Y, et al. LncRNA MEG3 promotes melanoma growth, metastasis and formation through modulating miR-21/E-cadherin axis[J]. Cancer Cell Int, 2020, 20:12. DOI: 10.1186/s12935-019-1087-4.
doi: 10.1186/s12935-019-1087-4 |
[34] |
Kolenda T, Rutkowski P, Michalak M, et al. Plasma lncRNA expression profile as a prognostic tool in BRAF-mutant metastatic melanoma patients treated with BRAF inhibitor[J]. Oncotarget, 2019, 10(39):3879-3893. DOI: 10.18632/oncotarget.26989.
doi: 10.18632/oncotarget.26989 pmid: 31231466 |
[35] |
Yu X, Zheng H, Tse G, et al. CASC2: an emerging tumour-suppressing long noncoding RNA in human cancers and melanoma[J]. Cell Prolif, 2018, 51(6):e12506. DOI: 10.1111/cpr.12506.
doi: 10.1111/cpr.12506 |
[36] |
Wang Z, Wang X, Zhou H, et al. Long non-coding RNA CASC2 inhibits tumorigenesis via the miR-181a/PLXNC1 axis in melanoma[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(3):263-272. DOI: 10.1093/abbs/gmx148.
doi: 10.1093/abbs/gmx148 |
[37] |
Zhang Y, Qian W, Feng F, et al. Upregulated lncRNA CASC2 may inhibit malignant melanoma development through regulating miR-18a-5p/RUNX1[J]. Oncol Res, 2019, 27(3):371-377. DOI: 10.3727/096504018X15178740729367.
doi: 10.3727/096504018X15178740729367 |
[1] | 吴旻杭, 孙文政, 于庆卓, 郭蓉, 叶辉, 杜莹, 邱晋, 安华章, 曹莉莉. RNF43通过β-catenin抑制黑色素瘤细胞PD-L1表达并促进CD8+ T细胞介导的抗肿瘤免疫反应[J]. 国际肿瘤学杂志, 2023, 50(7): 407-412. |
[2] | 张睿智, 陈鑫, 张鹏, 陶凯雄. 直肠肛管黑色素瘤的诊治新进展[J]. 国际肿瘤学杂志, 2020, 47(6): 377-380. |
[3] | 杜明丽, 李桂香, 吴文娟, 赵磊. 循环肿瘤DNA在转移性黑色素瘤靶向治疗及免疫治疗中的应用[J]. 国际肿瘤学杂志, 2020, 47(6): 381-384. |
[4] | 李醒, 黄俊星. lncRNA MEG3作为miR-21的ceRNA在恶性肿瘤中的作用[J]. 国际肿瘤学杂志, 2020, 47(1): 35-38. |
[5] | 金兰,康晓静. 黑色素瘤靶向治疗的耐药机制及其治疗策略[J]. 国际肿瘤学杂志, 2018, 45(7): 444-448. |
[6] | 缪秋菊,王逸飞,徐秀莲. 分子靶向治疗在恶性黑色素瘤中的应用[J]. 国际肿瘤学杂志, 2018, 45(11): 699-702. |
[7] | 夏得淳,康晓静. Notch信号通路在黑色素瘤生长、转移中的作用及机制[J]. 国际肿瘤学杂志, 2018, 45(10): 635-638. |
[8] | 王燕军,康晓静. 黑色素瘤的生物标志物[J]. 国际肿瘤学杂志, 2018, 45(1): 59-. |
[9] | 柴莉,康晓静. 非编码小RNA与黑色素瘤[J]. 国际肿瘤学杂志, 2017, 44(7): 541-543. |
[10] | 孙澄宇,徐玉清. 合并自身免疫性疾病的黑色素瘤患者的免疫疗法[J]. 国际肿瘤学杂志, 2017, 44(4): 310-312. |
[11] | 贺艳,帖君,唐郡. 小眼畸形相关转录因子在黑色素瘤转移中的作用[J]. 国际肿瘤学杂志, 2017, 44(4): 281-283. |
[12] | 周姝, 沈娜, 程范军. 竞争性内源RNA与肿瘤病理机制[J]. 国际肿瘤学杂志, 2017, 44(2): 115-117. |
[13] | 顾漱溟,徐岷. 长非编码RNA UCA1作为竞争性内源RNA在调控肿瘤 发生发展中的作用 [J]. 国际肿瘤学杂志, 2017, 44(12): 911-913. |
[14] | 唐建琴,侯晓阳,蒋冠,魏志平,刘彦群. 纳米技术在黑色素瘤诊断及治疗中的应用[J]. 国际肿瘤学杂志, 2016, 43(11): 871-873. |
[15] | 马亚南, 王宝红, 苏庆红, 许晓群, 王郡甫. 微小RNA27a对黑色素瘤WM239细胞增殖和凋亡的影响[J]. 国际肿瘤学杂志, 2015, 42(3): 161-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||