国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (10): 622-626.doi: 10.3760/cma.j.cn371439-20210429-00122
收稿日期:
2021-04-29
修回日期:
2021-08-02
出版日期:
2021-10-08
发布日期:
2021-11-24
通讯作者:
曹芳
E-mail:sdcaofang@163.com
基金资助:
He Miao1, Fan Kui2, Cao Fang3()
Received:
2021-04-29
Revised:
2021-08-02
Online:
2021-10-08
Published:
2021-11-24
Contact:
Cao Fang
E-mail:sdcaofang@163.com
Supported by:
摘要:
肺癌死亡率位居恶性肿瘤之首,当前肺癌治疗中发生耐药是困阻临床工作者的重大难题。近年研究发现表观遗传学与肺癌耐药联系密切,尤其在DNA甲基化、组蛋白修饰以及非编码RNA调节中发挥重要作用。通过以上三个特征探讨影响肺癌耐药的机制,并针对机制探讨能有效改善肺癌耐药的药物,可为临床工作中肺癌耐药相关问题提供解决思路,对肺癌患者预后评估提供参考。
何苗, 范奎, 曹芳. 表观遗传与肺癌耐药[J]. 国际肿瘤学杂志, 2021, 48(10): 622-626.
He Miao, Fan Kui, Cao Fang. Epigenetics and drug resistance in lung cancer[J]. Journal of International Oncology, 2021, 48(10): 622-626.
[1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1):7-33. DOI: 10.3322/caac.21654.
doi: 10.3322/caac.21654 |
[2] |
Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2):117. DOI: 10.1038/s41419-017-0063-y.
doi: 10.1038/s41419-017-0063-y pmid: 29371589 |
[3] |
Kelly AD, Issa JJ. The promise of epigenetic therapy: reprogramming the cancer epigenome[J]. Curr Opin Genet Dev, 2017, 42:68-77. DOI: 10.1016/j.gde.2017.03.015.
doi: 10.1016/j.gde.2017.03.015 |
[4] |
Castilho RM, Squarize CH, Almeida LO. Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy[J]. Int J Mol Sci, 2017, 18(7):1506. DOI: 10.3390/ijms18071506.
doi: 10.3390/ijms18071506 |
[5] |
Darılmaz Yüce G, Ortaç Ersoy E. Lung cancer and epigenetic modifications[J]. Tuberk Toraks, 2016, 64(2):163-170. DOI: 10.5578/tt.10231.
doi: 10.5578/tt.10231 |
[6] |
Tariq I, Ali MY, Janga H, et al. Downregulation of MDR 1 gene contributes to tyrosine kinase inhibitor induce apoptosis and reduction in tumor metastasis: a gravity to space investigation[J]. Int J Pharm, 2020, 591:119993. DOI: 10.1016/j.ijpharm.2020.119993.
doi: 10.1016/j.ijpharm.2020.119993 |
[7] |
Li A, Song J, Lai Q, et al. Hypermethylation of ATP-binding cassette B1 (ABCB1) multidrug resistance 1 (MDR1) is associated with cisplatin resistance in the A549 lung adenocarcinoma cell line[J]. Int J Exp Pathol, 2016, 97(6):412-421. DOI: 10.1111/iep.12212.
doi: 10.1111/iep.12212 |
[8] |
Pankova D, Jiang Y, Chatzifrangkeskou M, et al. RASSF1A controls tissue stiffness and cancer stem-like cells in lung adenocarcinoma[J]. EMBO J, 2019, 38(13):e100532. DOI: 10.15252/embj.2018100532.
doi: 10.15252/embj.2018100532 |
[9] |
Sun F, Li L, Yan P, et al. Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance[J]. Nat Commun, 2019, 10(1):5324.DOI: 10.1038/s41467-019-13331-x.
doi: 10.1038/s41467-019-13331-x |
[10] |
Krushkal J, Silvers T, Reinhold WC, et al. Epigenome-wide DNA methylation analysis of small cell lung cancer cell lines suggests potential chemotherapy targets[J]. Clin Epigenetics, 2020, 12(1):93. DOI: 10.1186/s13148-020-00876-8.
doi: 10.1186/s13148-020-00876-8 pmid: 32586373 |
[11] |
De Smedt E, Lui H, Maes K, et al. The epigenome in multiple myeloma: impact on tumor cell plasticity and drug response[J]. Front Oncol, 2018, 8:566. DOI: 10.3389/fonc.2018.00566.
doi: 10.3389/fonc.2018.00566 pmid: 30619733 |
[12] |
Benton CB, Fiskus W, Bhalla KN. Targeting histone acetylation: readers and writers in leukemia and cancer[J]. Cancer J, 2017, 23(5):286-291. DOI: 10.1097/PPO.0000000000000284.
doi: 10.1097/PPO.0000000000000284 |
[13] |
Gardner EE, Lok BH, Schneeberger VE, et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis[J]. Cancer Cell, 2017, 31(2):286-299. DOI: 10.1016/j.ccell.2017.01.006.
doi: S1535-6108(17)30006-5 pmid: 28196596 |
[14] |
Rowbotham SP, Li F, Dost AFM, et al. H3K9 methyltransferases and demethylases control lung tumor-propagating cells and lung cancer progression[J]. Nat Commun, 2018, 9(1):4559. DOI: 10.1038/s41467-018-07077-1.
doi: 10.1038/s41467-018-07077-1 pmid: 30455465 |
[15] |
Mi W, Guan H, Lyu J, et al. YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer[J]. Nat Commun, 2017, 8(1):1088. DOI: 10.1038/s41467-017-01173-4.
doi: 10.1038/s41467-017-01173-4 |
[16] |
Zamagni A, Pasini A, Pirini F, et al. CDKN1A upregulation and cisplatin-pemetrexed resistance in non-small cell lung cancer cells[J]. Int J Oncol, 2020, 56(6):1574-1584. DOI: 10.3892/ijo.2020.5024.
doi: 10.3892/ijo.2020.5024 pmid: 32236605 |
[17] |
Bertran-Alamillo J, Cattan V, Schoumacher M, et al. AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy[J]. Nat Commun, 2019, 10(1):1812. DOI: 10.1038/s41467-019-09734-5.
doi: 10.1038/s41467-019-09734-5 pmid: 31000705 |
[18] |
Ning S, Li X. Non-coding RNA resources[J]. Adv Exp Med Biol, 2018, 1094:1-7. DOI: 10.1007/978-981-13-0719-5_1.
doi: 10.1007/978-981-13-0719-5_1 |
[19] |
Hu C, Meiners S, Lukas C, et al. Role of exosomal microRNAs in lung cancer biology and clinical applications[J]. Cell Prolif, 2020, 53(6):e12828. DOI: 10.1111/cpr.12828.
doi: 10.1111/cpr.12828 |
[20] |
Qin X, Yu S, Zhou L, et al. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner[J]. Int J Nanomedicine, 2017, 12:3721-3733. DOI: 10.2147/IJN.S131516.
doi: 10.2147/IJN.S131516 |
[21] |
Tan W, Liao Y, Qiu Y, et al. miRNA 146a promotes chemotherapy resistance in lung cancer cells by targeting DNA damage inducible transcript 3 (CHOP)[J]. Cancer Lett, 2018, 428:55-68. DOI: 10.1016/j.canlet.2018.04.028.
doi: 10.1016/j.canlet.2018.04.028 |
[22] |
Zhang X, Xie K, Zhou H, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance[J]. Mol Cancer, 2020, 19(1):47. DOI: 10.1186/s12943-020-01171-z.
doi: 10.1186/s12943-020-01171-z |
[23] |
李智, 许静凯, 张博. 长非编码RNA在肿瘤中的作用机制[J]. 国际肿瘤学杂志, 2018, 45(4):220-222. DOI: 10.3760/cma.j.issn.1673-422X.2018.04.007.
doi: 10.3760/cma.j.issn.1673-422X.2018.04.007 |
[24] |
Feng C, Zhao Y, Li Y, et al. LncRNA MALAT1 promotes lung cancer proliferation and gefitinib resistance by acting as a miR-200a sponge[J]. Arch Bronconeumol (Engl Ed), 2019, 55(12):627-633. DOI: 10.1016/j.arbres.2019.03.026.
doi: 10.1016/j.arbres.2019.03.026 |
[25] |
Huang N, Guo W, Ren K, et al. LncRNA AFAP1-AS1 supresses miR-139-5p and promotes cell proliferation and chemotherapy resis-tance of non-small cell lung cancer by competitively upregulating RRM2[J]. Front Oncol, 2019, 9:1103. DOI: 10.3389/fonc.2019.01103.
doi: 10.3389/fonc.2019.01103 pmid: 31696057 |
[26] | Hou T, Ma J, Hu C, et al. Decitabine reverses gefitinib resistance in PC9 lung adenocarcinoma cells by demethylation of RASSF1A and GADD45β promoter[J]. Int J Clin Exp Pathol, 2019, 12(11):4002-4010. |
[27] |
Lai Q, Wang H, Li A, et al. Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells[J]. Oncogene, 2018, 37(17):2302-2312. DOI: 10.1038/s41388-018-0125-3.
doi: 10.1038/s41388-018-0125-3 pmid: 29422611 |
[28] |
Patel K, Doddapaneni R, Patki M, et al. Erlotinib-valproic acid liquisolid formulation: evaluating oral bioavailability and cytotoxicity in erlotinib-resistant non-small cell lung cancer cells[J]. AAPS Pharm Sci Tech, 2019, 20(3):135. DOI: 10.1208/s12249-019-1332-0.
doi: 10.1208/s12249-019-1332-0 |
[29] |
Zang H, Qian G, Zong D, et al. Overcoming acquired resistance of epidermal growth factor receptor-mutant non-small cell lung cancer cells to osimertinib by combining osimertinib with the histone deacetylase inhibitor panobinostat (LBH589)[J]. Cancer, 2020, 126(9):2024-2033. DOI: 10.1002/cncr.32744.
doi: 10.1002/cncr.32744 |
[30] |
Park SE, Kim DE, Kim MJ, et al. Vorinostat enhances gefitinib induced cell death through reactive oxygen species-dependent cleavage of HSP90 and its clients in non-small cell lung cancer with the EGFR mutation[J]. Oncol Rep, 2019, 41(1):525-533. DOI: 10.3892/or.2018.6814.
doi: 10.3892/or.2018.6814 |
[31] |
Jiang P, Xu C, Chen L, et al. Epigallocatechin-3-gallate inhibited cancer stem cell-like properties by targeting hsa-miR-485-5p/RXRα in lung cancer[J]. J Cell Biochem, 2018, 119(10):8623-8635. DOI: 10.1002/jcb.27117.
doi: 10.1002/jcb.27117 pmid: 30058740 |
[32] |
Jiang P, Xu C, Chen L, et al. EGCG inhibits CSC-like properties through targeting miR-485/CD44 axis in A549-cisplatin resistant cells[J]. Mol Carcinog, 2018, 57(12):1835-1844. DOI: 10.1002/mc.22901.
doi: 10.1002/mc.22901 |
[33] |
Lu M, Liu B, Xiong H, et al. Trans-3,5,4'-trimethoxystilbene reduced gefitinib resistance in NSCLCs via suppressing MAPK/Akt/Bcl-2 pathway by upregulation of miR-345 and miR-498[J]. J Cell Mol Med, 2019, 23(4):2431-2441. DOI: 10.1111/jcmm.14086.
doi: 10.1111/jcmm.14086 |
[34] |
Gao L, Shao T, Zheng W, et al. Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signaling[J]. Clin Transl Oncol, 2021, 23(7):1386-1393. DOI: 10.1007/s12094-020-02531-3.
doi: 10.1007/s12094-020-02531-3 pmid: 33566305 |
[35] |
Liu H, Zhao H. Prognosis related miRNAs, DNA methylation, and epigenetic interactions in lung adenocarcinoma[J]. Neoplasma, 2019, 66(3):487-493. DOI: 10.4149/neo_2018_181029N805.
doi: 10.4149/neo_2018_181029N805 pmid: 30868896 |
[36] |
Cao LL, Song X, Pei L, et al. Histone deacetylase HDAC1 expression correlates with the progression and prognosis of lung cancer: a meta-analysis[J]. Medicine (Baltimore), 2017, 96(31):e7663. DOI: 10.1097/MD.0000000000007663.
doi: 10.1097/MD.0000000000007663 |
[37] |
Yang Y, Ding L, Hu Q, et al. MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis[J]. Mol Cancer, 2017, 16(1):141. DOI: 10.1186/s12943-017-0710-z.
doi: 10.1186/s12943-017-0710-z pmid: 28830450 |
[1] | 刘娜, 寇介丽, 杨枫, 刘桃桃, 李丹萍, 韩君蕊, 杨立洲. 血清miR-106b-5p、miR-760联合低剂量螺旋CT诊断早期肺癌的临床价值[J]. 国际肿瘤学杂志, 2024, 51(6): 321-325. |
[2] | 陈红健, 张素青. 血清miR-24-3p、H2AFX与肝癌患者临床病理特征及术后复发的关系研究[J]. 国际肿瘤学杂志, 2024, 51(6): 344-349. |
[3] | 王丽, 刘志华, 杨伟洪, 蒋凤莲, 李全泳, 宋浩杰, 鞠文东. ROS1突变肺腺鳞癌合并脑梗死为主要表现的Trousseau综合征1例[J]. 国际肿瘤学杂志, 2024, 51(6): 382-384. |
[4] | 龚艳, 陈洪雷. 微RNA调控卵巢癌顺铂耐药的机制研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 186-190. |
[5] | 刘博翰, 黄俊星. 液体活检技术在食管鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 105-108. |
[6] | 贺嘉慧, 胡钦勇. 基于GBD数据的中国和美国肺癌发病和死亡趋势及危险因素对比分析[J]. 国际肿瘤学杂志, 2024, 51(1): 29-36. |
[7] | 柳洋, 蒋路路, 管凯文, 周岳阳, 康小红. linc01410在恶性肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2023, 50(9): 540-543. |
[8] | 崔曼莉, 路宁, 朱琳, 李茜, 张明鑫. 基于高通量测序数据分析食管鳞状细胞癌circRNA的研究[J]. 国际肿瘤学杂志, 2023, 50(6): 328-335. |
[9] | 全祯豪, 徐飞鹏, 黄哲, 黄先进, 陈日红, 孙开裕, 胡旭, 林琳. 沉默lncRNA FTX通过miR-22-3p/NLRP3炎症体通路抑制胃癌细胞增殖[J]. 国际肿瘤学杂志, 2023, 50(4): 202-207. |
[10] | 拜莹, 李琦, 李亚芹, 赵卫红. E2F1与lncRNA在恶性肿瘤发生发展中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 164-168. |
[11] | 李雄安, 颜艳艳. 丙戊酸镁用于治疗继发癫痫的晚期肺癌脑转移患者1例报道[J]. 国际肿瘤学杂志, 2023, 50(3): 191-192. |
[12] | 左小平, 刘晓川, 吴西强, 李周, 夏天, 刘国凤. 老年早期肺癌患者经胸腔镜肺切除术后心律失常发生的危险因素及预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(12): 711-716. |
[13] | 陈郁, 许华, 刘海, 陈士新. 基于CT影像学特征的恶性肺纯磨玻璃结节患者病理分型预测模型构建[J]. 国际肿瘤学杂志, 2023, 50(11): 655-660. |
[14] | 闫学敏, 武霄勇, 张佳谊, 文锦旭, 王跃欣. SPRY4-IT1与乳腺癌[J]. 国际肿瘤学杂志, 2023, 50(10): 627-630. |
[15] | 马小平, 常君丽, 孙星媛, 杨燕萍. 长非编码RNA调控骨肉瘤耐药机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 51-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||