| [1] | 
																						 
											  Moreau P, San Miguel J, Sonneveld P , et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis,treatment and follow-up[J]. Ann Oncol, 2017,28Supple 4: iv52-iv61. DOI: 10.1093/annonc/mdx096.
											 											 | 
										
																													
																						| [2] | 
																						 
											  Muccio VE, Saraci E, Gilestro M, et al. Multiple myeloma: new surface antigens for the characterization of plasma cells in the era of novel agents[J]. Cytometry B Clin Cytom, 2016,9(1):81-90. DOI: 10.1002/cyto.b.21279.
											 											 | 
										
																													
																						| [3] | 
																						 
											  Krejcik J, Frerichs KA, Nijhof IS, et al. Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab[J]. Clin Cancer Res, 2017,23(24):7498-7511. DOI: 10.1158/1078-0432.CCR-17-2027.
											 											 | 
										
																													
																						| [4] | 
																						 
											  Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib and dexamethasone for multiple myeloma[J]. N Engl J Med, 2016,375(8):754-766. DOI: 10.1056/NEJMoa1606038.
											 											 | 
										
																													
																						| [5] | 
																						 
											  Dimopoulos MA, San-Miguel J, Belch A, et al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: update danalysis of POLLUX[J]. Haematologica, 2018,103(12):2088-2096. DOI: 10.3324/haematol.2018.194282. 
											 												 
																																					pmid: 30237262
																							 											 | 
										
																													
																						| [6] | 
																						 
											  Luo XW, Du XQ, Li JL, et al. Treatment options for refractory/relapsed multiple myeloma: an updated evidence synjournal by network meta-analysis[J]. Cancer Manag Res, 2018,10:2817-2823. DOI: 10.2147/CMAR.S166640.
											 											 | 
										
																													
																						| [7] | 
																						 
											  Kurdi AT, Glavey SV, Bezman NA, et al. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab[J]. Mol Cancer Ther, 2018,17(7):1454-1463. DOI: 10.1158/1535-7163.MCT-17-0998. 
											 												 
																																					pmid: 29654064
																							 											 | 
										
																													
																						| [8] | 
																						 
											  Dimopoulos MA, Lonial S, Betts KA, et al. Elotuzumab plus lenali-domide and dexamethasone in relapsed/refractory multiple myeloma: extended 4-year follow-up and analysis of relative progression-free survival from the randomized ELOQUENT-2 trial[J]. Cancer, 2018,124(20):4032-4043. DOI: 10.1002/cncr.31680.
											 											 | 
										
																													
																						| [9] | 
																						 
											  Tai YT, Mayes PA, Acharya C, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma[J]. Blood, 2014,123(20):3128-3138. DOI: 10.1182/blood-2013-10-535088. 
											 												 
																																					pmid: 24569262
																							 											 | 
										
																													
																						| [10] | 
																						 
											  Trudel S, Lendvai N, Popat R, et al. Targeting B-cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion phase 1 trial[J]. Lancet Oncol, 2018,19(12):1641-1653. DOI: 10.1016/S1470-2045(18)30576-X.
											 											 | 
										
																													
																						| [11] | 
																						 
											  Pahl A, Lutz C, Hechler T, et al. Amanitins and their development as a payload for antibody-drug conjugates[J]. Drug Discov Today Technol, 2018,30:85-89. DOI: 10.1016/j.ddtec.2018.08.005.
											 											 | 
										
																													
																						| [12] | 
																						 
											  Cohen AD, Garfall AL, Dogan A, et al. Serial treatment of relapsed/refractory multiple myeloma with different BCMA-targeting therapies[J]. Blood Adv, 2019,3(16):2487-2490. DOI: 10.1182/bloodadvances.2019000466.
											 											 | 
										
																													
																						| [13] | 
																						 
											  Hipp S, Tai YT, Blanset D, et al. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo[J]. Leukemia, 2017,31(8):1743-1751. DOI: 10.1038/leu.2016.388.
											 											 | 
										
																													
																						| [14] | 
																						 
											  Seckinger A, Delgado JA, Moser S, et al. Target expression, gene-ration, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment[J]. Cancer Cell, 2017,31(3):396-410. DOI: 10.1016/j.ccell.2017.02.002.
											 											 | 
										
																													
																						| [15] | 
																						 
											  Chan WK, Kang S, Youssef Y, et al. A CS1-NKG2D bispecific antibody collectively activates cytolytic immune cells against multiple myeloma[J]. Cancer Immunol Res, 2018,6(7):776-787. DOI: 10.1158/2326-6066.CIR-17-0649. 
											 												 
																									doi: 10.1158/2326-6066.CIR-17-0649
																																					pmid: 29769244
																							 											 | 
										
																													
																						| [16] | 
																						 
											  Ramadoss NS, Schulman AD, Choi SH, et al. An anti-B cell maturation antigen bispecific antibody for multiple myeloma[J]. J Am Chem Soc, 2015,137(16):5288-5291. DOI: 10.1021/jacs.5b01876.
											 											 | 
										
																													
																						| [17] | 
																						 
											  Görgün G, Samur MK, Cowens KB, et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma[J]. Clin Cancer Res, 2015,21(20):4607-4618. DOI: 10.1158/1078-0432.CCR-15-0200. 
											 												 
																									doi: 10.1158/1078-0432.CCR-15-0200
																																					pmid: 25979485
																							 											 | 
										
																													
																						| [18] | 
																						 
											  Jing W, Gershan JA, Weber J, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immuno-therapy for myeloma[J]. J Immunother Cancer, 2015,3(1):2. DOI: 10.1186/s40425-014-0043-z.
											 											 | 
										
																													
																						| [19] | 
																						 
											  Garfall AL, Stadtmauer EA, Hwang WT, et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma[J]. JCI Insight, 2018,3(8):e120505. DOI: 10.1172/jci.insight.120505.
											 											 | 
										
																													
																						| [20] | 
																						 
											  Lee L, Draper B, Chaplin N, et al. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma[J]. Blood, 2018,131(7):746-758. DOI: 10.1182/blood-2017-05-781351. 
											 												 
																																					pmid: 29284597
																							 											 | 
										
																													
																						| [21] | 
																						 
											  Garfall AL, Maus MV, Hwang WT, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma[J]. N Engl J Med, 2015,373(11):1040-1047. DOI: 10.1056/NEJMoa1504542. 
											 												 
																																					pmid: 26352815
																							 											 | 
										
																													
																						| [22] | 
																						 
											  Chen D, Zou J, Zong Y, et al. Anti-human CD138 monoclonal antibodies and their bispecific formats: generation and characterization[J]. Immunopharmacol Immunotoxicol, 2016,38(3):175-183. DOI: 10.3109/08923973.2016.1153110.
											 											 | 
										
																													
																						| [23] | 
																						 
											  Palaiologou M, Delladetsima I, Tiniakos D. CD138 (syndecan-1) expression in health and disease[J]. Histol Histopathol, 2014,29(2):177-189. DOI: 10.14670/HH-29.177. 
											 												 
																																					pmid: 24150912
																							 											 | 
										
																													
																						| [24] | 
																						 
											  Fichou N, Gouard S, Maurel C, et al. Single-dose anti-CD138 radioimmunotherapy: bismuth-213 is more efficient than lutetium-177 for treatment of multiple myeloma in a preclinical model[J]. Front Med (Lausanne), 2015,2:76. DOI: 10.3389/fmed.2015.00076.
											 											 | 
										
																													
																						| [25] | 
																						 
											  Wang X, Walter M, Urak R, et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma[J]. Clin Cancer Res, 2018,24(1):106-119. DOI: 10.1158/1078-0432.CCR-17-0344. 
											 												 
																																					pmid: 29061640
																							 											 | 
										
																													
																						| [26] | 
																						 
											  Shi Y, Wang G, Muhowski EM, et al. Ibrutinib reprograms the glucocorticoid receptor in chronic lymphocytic leukemia cells[J]. Leukemia, 2019,33(7):1650-1662. DOI: 10.1038/s41375-019-0381-4.
											 											 | 
										
																													
																						| [27] | 
																						 
											  Natarajan G, Terrazas C, Oghumu S, et al. Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells[J]. OncoImmunology, 2015,5(1):e1057385. DOI: 10.1080/2162402X.2016.1057385. 
											 												 
																																					pmid: 26942065
																							 											 | 
										
																													
																						| [28] | 
																						 
											  Ma J, Gong W, Liu S, et al. Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3[J]. Tumour Biol, 2018,40(1):1010428317731369. DOI: 10.1177/1010428317731369. 
											 												 
																									doi: 10.1177/1010428317731369
																																					pmid: 29320977
																							 											 |