国际肿瘤学杂志 ›› 2020, Vol. 47 ›› Issue (9): 555-559.doi: 10.3760/cma.j.cn371439-20200423-00077
收稿日期:
2020-04-23
修回日期:
2020-07-25
出版日期:
2020-09-08
发布日期:
2020-10-27
通讯作者:
张传玉
E-mail:zhangchuanyu0926@163.com
Yang Lei, Zhang Chuanyu(), Zhang Zaixian, Liu Huan
Received:
2020-04-23
Revised:
2020-07-25
Online:
2020-09-08
Published:
2020-10-27
Contact:
Zhang Chuanyu
E-mail:zhangchuanyu0926@163.com
摘要:
影像基因组学用影像组学方法探索影像学特征与基因表达模式之间的联系,具有无创、能显示肿瘤整体信息的特点。影像组学的应用对预测非小细胞肺癌(NSCLC)的基因突变具有一定作用,是近年来研究的热点。影像组学特征与常规影像学特征、临床特征等联系起来,可提供肿瘤的多方位信息,在NSCLC驱动基因表型的预测和精准治疗中将发挥越来越重要的作用。
杨蕾, 张传玉, 张在先, 刘欢. 非小细胞肺癌影像基因组学[J]. 国际肿瘤学杂志, 2020, 47(9): 555-559.
Yang Lei, Zhang Chuanyu, Zhang Zaixian, Liu Huan. Radiogenomics in non-small cell lung cancer[J]. Journal of International Oncology, 2020, 47(9): 555-559.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020,70(1):7-30. DOI: 10.3322/caac.21590.
doi: 10.3322/caac.21590 pmid: 31912902 |
[2] |
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017,14(12):749-762. DOI: 10.1038/nrclinonc.2017.141.
pmid: 28975929 |
[3] |
Zhou M, Leung A, Echegaray S, et al. Non-small cell lung cancer radiogenomics map identifies relationships between molecular and imaging phenotypes with prognostic implications[J]. Radiology, 2018,286(1):307-315. DOI: 10.1148/radiol.2017161845.
doi: 10.1148/radiol.2017161845 pmid: 28727543 |
[4] |
Liu Y, Kim J, Balagurunathan Y, et al. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas[J]. Clin Lung Cancer, 2016,17(5):441-448.e6. DOI: 10.1016/j.cllc.2016.02.001.
doi: 10.1016/j.cllc.2016.02.001 pmid: 27017476 |
[5] |
Song J, Shi J, Dong D, et al. A new approach to predict progression-free survival in stage Ⅳ EGFR-mutant NSCLC patients with EGFR-TKI therapy[J]. Clin Cancer Res, 2018,24(15):3583-3592. DOI: 10.1158/1078-0432.CCR-17-2507.
doi: 10.1158/1078-0432.CCR-17-2507 pmid: 29563137 |
[6] |
Zhang L, Chen B, Liu X, et al. Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer[J]. Transl Oncol, 2018,11(1):94-101. DOI: 10.1016/j.tranon.2017.10.012.
pmid: 29216508 |
[7] |
Jia TY, Xiong JF, Li XY, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling[J]. Eur Radiol, 2019,29(9):4742-4750. DOI: 10.1007/s00330-019-06024-y.
doi: 10.1007/s00330-019-06024-y pmid: 30778717 |
[8] |
Yang X, Dong X, Wang J, et al. Computed tomography-based radiomics signature: a potential indicator of epidermal growth factor receptor mutation in pulmonary adenocarcinoma appearing as a subsolid nodule[J]. Oncologist, 2019,24(11):e1156-e1164. DOI: 10.1634/theoncologist.2018-0706.
doi: 10.1634/theoncologist.2018-0706 pmid: 30936378 |
[9] |
Tu W, Sun G, Fan L, et al. Radiomics signature: a potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology[J]. Lung Cancer, 2019,132:28-35. DOI: 10.1016/j.lungcan.2019.03.025.
doi: 10.1016/j.lungcan.2019.03.025 |
[10] |
Wang S, Shi J, Ye Z, et al. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning[J]. Eur Respir J, 2019,53(3):1800986. DOI: 10.1183/13993003.00986-2018.
doi: 10.1183/13993003.00986-2018 pmid: 30635290 |
[11] |
Li S, Ding C, Zhang H, et al. Radiomics for the prediction of EGFR mutation subtypes in non-small cell lung cancer[J]. Med Phys, 2019,46(10):4545-4552. DOI: 10.1002/mp.13747.
doi: 10.1002/mp.13747 pmid: 31376283 |
[12] |
Zhao W, Wu Y, Xu Y, et al. The potential of radiomics nomogram in non-invasively prediction of epidermal growth factor receptor mutation status and subtypes in lung adenocarcinoma[J]. Front Oncol, 2020,9:1485. DOI: 10.3389/fonc.2019.01485.
doi: 10.3389/fonc.2019.01485 pmid: 31993370 |
[13] |
Wang H, Guo H, Wang Z, et al. The diagnostic value of quantitative CT analysis of ground-glass volume percentage in differentiating epidermal growth factor receptor mutation and subtypes in lung adenocarcinoma[J]. Biomed Res Int, 2019,2019:9643836. DOI: 10.1155/2019/9643836.
doi: 10.1155/2019/9643836 pmid: 30956990 |
[14] |
Suh YJ, Lee HJ, Kim YJ, et al. Computed tomography characteristics of lung adenocarcinomas with epidermal growth factor receptor mutation: a propensity score matching study[J]. Lung Cancer, 2018,123:52-59. DOI: 10.1016/j.lungcan.2018.06.030.
doi: 10.1016/j.lungcan.2018.06.030 pmid: 30089595 |
[15] |
Hong SJ, Kim TJ, Choi YW, et al. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: imaging features and histological subtypes[J]. Eur Radiol, 2016,26(10):3660-3668. DOI: 10.1007/s00330-015-4196-z.
doi: 10.1007/s00330-015-4196-z pmid: 26787602 |
[16] |
Hasegawa M, Sakai F, Ishikawa R, et al. CT features of epidermal growth factor receptor-mutated adenocarcinoma of the lung: comparison with nonmutated adenocarcinoma[J]. J Thorac Oncol, 2016,11(6):819-826. DOI: 10.1016/j.jtho.2016.02.010.
doi: 10.1016/j.jtho.2016.02.010 |
[17] |
Liu Y, Kim J, Qu F, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma[J]. Radiology, 2016,280(1):271-280. DOI: 10.1148/radiol.2016151455.
doi: 10.1148/radiol.2016151455 pmid: 26937803 |
[18] |
Qin X, Gu X, Lu Y, et al. EGFR-TKI-sensitive mutations in lung carcinomas: are they related to clinical features and CT findings?[J]. Cancer Manag Res, 2018,10:4019-4027. DOI: 10.2147/CMAR.S174623.
doi: 10.2147/CMAR.S174623 pmid: 30323660 |
[19] |
Koo HJ, Kim MY, Park S, et al. Non-small cell lung cancer with resistance to EGFR-TKI therapy: CT characteristics of T790M mutation-positive cancer[J]. Radiology, 2018,289(1):227-237. DOI: 10.1148/radiol.2018180070.
doi: 10.1148/radiol.2018180070 pmid: 30015588 |
[20] |
Yoon HJ, Sohn I, Cho JH, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach[J]. Medicine (Baltimore), 2015,94(41):e1753. DOI: 10.1097/MD.0000000000001753.
doi: 10.1097/MD.0000000000001753 |
[21] | 宋兰, 朱振宸, 姜蕾, 等. CT影像组学在预测肺腺癌ALK融合基因表达中的价值初探[J]. 中华放射学杂志, 2019,53(11):963-967. DOI: 10.3760/cma.j.issn.1005-1201.2019.11.007. |
[22] |
Song L, Zhu Z, Mao L, et al. Clinical, conventional CT and radiomic feature-based machine learning models for predicting ALK rearrangement status in lung adenocarcinoma patients[J]. Front Oncol, 2020,10:369. DOI: 10.3389/fonc.2020.00369.
doi: 10.3389/fonc.2020.00369 pmid: 32266148 |
[23] |
Kim TJ, Lee CT, Jheon SH, et al. Radiologic characteristics of surgically resected non-small cell lung cancer with ALK rearrangement or EGFR mutations[J]. Ann Thorac Surg, 2016,101(2):473-480. DOI: 10.1016/j.athoracsur.2015.07.062.
doi: 10.1016/j.athoracsur.2015.07.062 pmid: 26454747 |
[24] |
Wang H, Schabath MB, Liu Y, et al. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations[J]. Eur J Radiol, 2016,85(11):1934-1940. DOI: 10.1016/j.ejrad.2016.08.023.
doi: 10.1016/j.ejrad.2016.08.023 pmid: 27776643 |
[25] |
Mori M, Hayashi H, Fukuda M, et al. Clinical and computed tomography characteristics of non-small cell lung cancer with ALK gene rearrangement: comparison with EGFR mutation and ALK/EGFR-negative lung cancer[J]. Thorac Cancer, 2019,10(4):872-879. DOI: 10.1111/1759-7714.13017.
doi: 10.1111/tca.2019.10.issue-4 |
[26] |
Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic characte-rization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol, 2016,26(1):32-42. DOI: 10.1007/s00330-015-3814-0.
doi: 10.1007/s00330-015-3814-0 pmid: 25956936 |
[27] |
Miao Y, Zhu S, Li H, et al. Comparison of clinical and radiological characteristics between anaplastic lymphoma kinase rearrangement and epidermal growth factor receptor mutation in treatment naïve advanced lung adenocarcinoma[J]. J Thorac Dis, 2017,9(10):3927-3937. DOI: 10.21037/jtd.2017.08.134.
doi: 10.21037/jtd.2017.08.134 pmid: 29268403 |
[28] |
Mendoza DP, Stowell J, Muzikansky A, et al. Computed tomography imaging characteristics of non-small-cell lung cancer with anaplastic lymphoma kinase rearrangements: a systematic review and meta-analysis[J]. Clin Lung Cancer, 2019,20(5):339-349. DOI: 10.1016/j.cllc.2019.05.006.
doi: 10.1016/j.cllc.2019.05.006 |
[29] |
Seto K, Kuroda H, Yoshida T, et al. Higher frequency of occult lymph node metastasis in clinical N0 pulmonary adenocarcinoma with ALK rearrangement[J]. Cancer Manag Res, 2018,10:2117-2124. DOI: 10.2147/CMAR.S147569.
doi: 10.2147/CMAR.S147569 pmid: 30050322 |
[30] |
Weiss GJ, Ganeshan B, Miles KA, et al. Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic[J]. PLoS One, 2014,9(7):e100244. DOI: 10.1371/journal.pone.0100244.
doi: 10.1371/journal.pone.0100244 pmid: 24987838 |
[31] |
Rios Velazquez E, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer[J]. Cancer Res, 2017,77(14):3922-3930. DOI: 10.1158/0008-5472.CAN-17-0122.
doi: 10.1158/0008-5472.CAN-17-0122 pmid: 28566328 |
[32] |
Wang H, Schabath MB, Liu Y, et al. Association between computed tomographic features and kirsten rat sarcoma viral oncogene mutations in patients with stage Ⅰ lung adenocarcinoma and their prognostic value[J]. Clin Lung Cancer, 2016,17(4):271-278. DOI: 10.1016/j.cllc.2015.11.002.
doi: 10.1016/j.cllc.2015.11.002 pmid: 26712103 |
[33] |
Lv J, Zhang H, Ma J, et al. Comparison of CT radiogenomic and clinical characteristics between EGFR and KRAS mutations in lung adenocarcinomas[J]. Clin Radiol, 2018,73(6):590.e1-590.e8. DOI: 10.1016/j.crad.2018.01.009.
doi: 10.1016/j.crad.2018.01.009 |
[34] |
Rizzo S, Raimondi S, de Jong EEC, et al. Genomics of non-small cell lung cancer (NSCLC): association between CT-based imaging features and EGFR and K-RAS mutations in 122 patients—an external validation[J]. Eur J Radiol, 2019,110:148-155. DOI: 10.1016/j.ejrad.2018.11.032.
doi: 10.1016/j.ejrad.2018.11.032 pmid: 30599853 |
[35] |
Gevaert O, Echegaray S, Khuong A, et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer[J]. Sci Rep, 2017,7:41674. DOI: 10.1038/srep41674.
pmid: 28139704 |
[1] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. |
[2] | 曹晓辉, 于荭, 李万湖. 基于CT的影像组学分析在预测和鉴别治疗相关性肺炎中的应用[J]. 国际肿瘤学杂志, 2023, 50(2): 107-111. |
[3] | 吴嘉钰, 刘加成. 孤立性磨玻璃结节样肺腺癌的影像组学研究进展[J]. 国际肿瘤学杂志, 2022, 49(8): 449-452. |
[4] | 金晨星, 赵翌. KRAS突变肺腺癌的研究进展[J]. 国际肿瘤学杂志, 2020, 47(3): 180-184. |
[5] | 陆海迪, 沈浮, 陆建平, 郝立强. 基于磁共振高分辨T2WI影像组学预测直肠癌新辅助治疗后病理完全反应的研究[J]. 国际肿瘤学杂志, 2020, 47(10): 593-597. |
[6] | 国建林, 张传玉, 于华龙, 张在先. 影像基因组学在肺癌中的研究进展[J]. 国际肿瘤学杂志, 2019, 46(9): 544-547. |
[7] | 郭天慧,王浩铭,任瑞美,徐金鹏,宋浩,肖文静,徐名金,刘希光. 影像组学与影像基因组学在肺癌中的研究进展[J]. 国际肿瘤学杂志, 2018, 45(8): 566-569. |
[8] | 孙文宇,闫鹏飞,原颖丽,马克威. ALK基因抑制剂治疗非小细胞肺癌脑转移的研究进展[J]. 国际肿瘤学杂志, 2017, 44(6): 472-. |
[9] | 梁红格, 徐燕钟, 巍赵静, 陈闽江, 王华竹, 王孟昭. 克唑替尼在ALK阳性晚期NSCLC患者中的疗效和安全性评价及其预后影响因素[J]. 国际肿瘤学杂志, 2017, 44(5): 336-341. |
[10] | 滕菲,崔桂敏,史鸿云,刘妙玲,李延红. 放疗联合替莫唑胺治疗非小细胞肺癌脑转移瘤的临床观察[J]. 国际肿瘤学杂志, 2017, 44(4): 271-273. |
[11] | 徐绮腻, 李绪渊, 王鸿彪. 非小细胞肺癌二线治疗的进展[J]. 国际肿瘤学杂志, 2015, 42(5): 385-387. |
[12] | 房姝,潘志峰. ALK基因在非小细胞肺癌中的研究进展[J]. 国际肿瘤学杂志, 2014, 41(8): 592-594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||