国际肿瘤学杂志 ›› 2025, Vol. 52 ›› Issue (3): 169-175.doi: 10.3760/cma.j.cn371439-20241021-00026
收稿日期:
2024-10-21
修回日期:
2024-11-27
出版日期:
2025-03-08
发布日期:
2025-04-02
通讯作者:
何敬东,Email:hjddoctor@njmu.edu.cn
基金资助:
Ouyang Surui, Sun Mengying, Tang Zhuang, Li Jin, He Jingdong()
Received:
2024-10-21
Revised:
2024-11-27
Online:
2025-03-08
Published:
2025-04-02
Contact:
He Jingdong,Email:Supported by:
摘要:
近年来,瘤内免疫注射作为晚期恶性肿瘤治疗的一种新兴用药方式,通过将细菌和毒素、溶瘤病毒、细胞因子、单克隆抗体、免疫细胞、模式识别受体激动剂、化疗药物、mRNA、抗体偶联药物等注射入实体瘤内,不仅可提高药物的生物利用度,还可降低全身系统性毒性。此外,碘油、水凝胶、纳米颗粒、载药微球等药物递送载体的发展解决了瘤内注射的药物易经脉管系统扩散、难以在局部长期存留的问题。深入探讨瘤内免疫注射药物及药物递送载体的研究进展,可为瘤内免疫注射的进一步研究提供参考,提高实体瘤患者的临床获益。
欧阳苏瑞, 孙梦颖, 唐桩, 李进, 何敬东. 瘤内免疫注射药物及药物递送载体的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 169-175.
Ouyang Surui, Sun Mengying, Tang Zhuang, Li Jin, He Jingdong. Research progress of intratumoral immune injection of drugs and drug delivery carriers[J]. Journal of International Oncology, 2025, 52(3): 169-175.
[1] | Yuan J, Khilnani A, Brody J, et al. Current strategies for intratumoural immunotherapy-beyond immune checkpoint inhibition[J]. Eur J Cancer, 2021, 157: 493-510. DOI: 10.1016/j.ejca.2021.08.004. |
[2] |
Xu W, Atkinson VG, Menzies AM. Intratumoural immunotherapies in oncology[J]. Eur J Cancer, 2020, 127: 1-11. DOI: 10.1016/j.ejca.2019.12.007.
pmid: 31962197 |
[3] |
Melero I, Castanon E, Alvarez M, et al. Intratumoural administration and tumour tissue targeting of cancer immunotherapies[J]. Nat Rev Clin Oncol, 2021, 18(9): 558-576. DOI: 10.1038/s41571-021-00507-y.
pmid: 34006998 |
[4] | Hamid O, Ismail R, Puzanov I. Intratumoral immunotherapy-update 2019[J]. Oncologist, 2020, 25(3): e423-e438. DOI: 10.1634/theoncologist.2019-0438. |
[5] | Som A, Rosenboom JG, Chandler A, et al. Image-guided intratumoral immunotherapy: developing a clinically practical technology[J]. Adv Drug Deliv Rev, 2022, 189: 114505. DOI: 10.1016/j.addr.2022.114505. |
[6] |
Tselikas L, Dardenne A, de Baere T, et al. Feasibility, safety and efficacy of human intra-tumoral immuno-therapy. Gustave Roussy's initial experience with its first 100 patients[J]. Eur J Cancer, 2022, 172: 1-12. DOI: 10.1016/j.ejca.2022.05.024.
pmid: 35724442 |
[7] | Zhang Z, Liu X, Chen D, et al. Radiotherapy combined with immunotherapy: the dawn of cancer treatment[J]. Signal Transduct Target Ther, 2022, 7(1): 258. DOI: 10.1038/s41392-022-01102-y. |
[8] |
van Puffelen JH, Keating ST, Oosterwijk E, et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer[J]. Nat Rev Urol, 2020, 17(9): 513-525. DOI: 10.1038/s41585-020-0346-4.
pmid: 32678343 |
[9] | Janku F, Zhang HH, Pezeshki A, et al. Intratumoral injection of clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors[J]. Clin Cancer Res, 2021, 27(1): 96-106. DOI: 10.1158/1078-0432.CCR-20-2065. |
[10] | Redenti A, Im J, Redenti B, et al. Probiotic neoantigen delivery vectors for precision cancer immunotherapy[J]. Nature, 2024, 635(8038): 453-461. DOI: 10.1038/s41586-024-08033-4. |
[11] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. DOI: 10.3760/cma.j.cn371439-20240119-00062. |
[12] | Ferrucci PF, Pala L, Conforti F, et al. Talimogene laherparepvec (T-VEC): an intralesional cancer immunotherapy for advanced melanoma[J]. Cancers (Basel), 2021, 13(6): 1383. DOI: 10.3390/cancers13061383. |
[13] |
Andtbacka RHI, Collichio F, Harrington KJ, et al. Final analyses of OPTiM: a randomized phase Ⅲ trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage Ⅲ-Ⅳ melanoma[J]. J Immunother Cancer, 2019, 7(1): 145. DOI: 10.1186/s40425-019-0623-z.
pmid: 31171039 |
[14] | Chesney JA, Puzanov I, Collichio FA, et al. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase Ⅱ trial[J]. J Immunother Cancer, 2023, 11(5): e006270. DOI: 10.1136/jitc-2022-006270. |
[15] | Mondal M, Guo J, He P, et al. Recent advances of oncolytic virus in cancer therapy[J]. Hum Vaccin Immunother, 2020, 16(10): 2389-2402. DOI: 10.1080/21645515.2020.1723363. |
[16] |
Dolladille C, Ederhy S, Sassier M, et al. Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer[J]. JAMA Oncol, 2020, 6(6): 865-871. DOI: 10.1001/jamaoncol.2020.0726.
pmid: 32297899 |
[17] |
Algazi A, Bhatia S, Agarwala S, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients[J]. Ann Oncol, 2020, 31(4): 532-540. DOI: 10.1016/j.annonc.2019.12.008.
pmid: 32147213 |
[18] | 仇海乐, 戎冬文, 贾军梅. 肿瘤坏死因子-α瘤内注射联合化疗治疗晚期非小细胞肺癌疗效观察[J]. 肿瘤基础与临床, 2020, 33(5): 404-406. |
[19] | Liu J, Chen Z, Li Y, et al. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy[J]. Front Pharmacol, 2021, 12: 731798. DOI: 10.3389/fphar.2021.731798. |
[20] | 周晓翠, 刘煜亮, 李桂清, 等. PD-1单克隆抗体瘤内用药对小鼠肺癌疗效的影响[J]. 免疫学杂志, 2021, 37(3): 270-276. DOI: 10.13431/j.cnki.immunol.j.20210039. |
[21] |
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies[J]. Blood Cancer J, 2021, 11(4): 69. DOI: 10.1038/s41408-021-00459-7.
pmid: 33824268 |
[22] | Papa S, Adami A, Metoudi M, et al. Intratumoral pan-ErbB targeted CAR-T for head and neck squamous cell carcinoma: interim analysis of the T4 immunotherapy study[J]. J Immunother Cancer, 2023, 11(6): e007162. DOI: 10.1136/jitc-2023-007162. |
[23] | Melero I, Ochoa MC, Molina C, et al. Intratumoral co-injection of NK cells and NKG2A-neutralizing monoclonal antibodies[J]. EMBO Mol Med, 2023, 15(11): e17804. DOI: 10.15252/emmm.202317804. |
[24] | Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13: 812774. DOI: 10.3389/fimmu.2022.812774. |
[25] | Halwani AS, Panizo C, Isufi I, et al. Phase 1/2 study of intratumoral G100 (TLR4 agonist) with or without pembrolizumab in follicular lymphoma[J]. Leuk Lymphoma, 2022, 63(4): 821-833. DOI: 10.1080/10428194.2021.2010057. |
[26] |
Moreno V, Calvo E, Middleton MR, et al. Treatment with a retinoic acid-inducible gene Ⅰ (RIG -Ⅰ) agonist as monotherapy and in combination with pembrolizumab in patients with advanced solid tumors: results from two phase 1 studies[J]. Cancer Immunol Immunother, 2022, 71(12): 2985-2998. DOI: 10.1007/s00262-022-03191-8.
pmid: 35596791 |
[27] | Meric-Bernstam F, Sweis RF, Kasper S, et al. Combination of the sting agonist MIW815 (ADU-S100) and PD-1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open-label, multicenter, phase Ⅰb study[J]. Clin Cancer Res, 2023, 29(1): 110-121. DOI: 10.1158/1078-0432.CCR-22-2235. |
[28] | Jiang W, Yang X, Wang X, et al. Bronchoscopic intratumoral injections of cisplatin and endostar as concomitants of standard chemotherapy to treat malignant central airway obstruction[J]. Postgrad Med J, 2022, 98(1156): 104-112. DOI: 10.1136/postgradmedj-2020-138823. |
[29] | 孙源辰, 黄瑛. 女性生殖系统恶性肿瘤超声引导下瘤内注射化疗药的疗效分析[J]. 中国医科大学学报, 2022, 51(11): 1009-1013, 1020. DOI: 10.12007/j.issn.0258-4646.2022.11.010. |
[30] | De Lombaerde E, De Wever O, De Geest BG. Delivery routes matter: safety and efficacy of intratumoral immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188526. DOI: 10.1016/j.bbcan.2021.188526. |
[31] | Hewitt SL, Bai A, Bailey D, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs[J]. Sci Transl Med, 2019, 11(477): eaat9143. DOI: 10.1126/scitranslmed.aat9143. |
[32] |
Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer[J]. Lancet, 2019, 394(10200): 793-804. DOI: 10.1016/S0140-6736(19)31774-X.
pmid: 31478503 |
[33] | Fu Z, Li S, Han S, et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 93. DOI: 10.1038/s41392-022-00947-7. |
[34] | Chang HP, Le HK, Shah DK. Pharmacokinetics and pharmacodynamics of antibody-drug conjugates administered via subcutaneous and intratumoral routes[J]. Pharmaceutics, 2023, 15(4): 1132. DOI: 10.3390/pharmaceutics15041132. |
[35] | Raoul JL, Forner A, Bolondi L, et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence[J]. Cancer Treat Rev, 2019, 72: 28-36. DOI: 10.1016/j.ctrv.2018.11.002. |
[36] | Tselikas L, de Baere T, Isoardo T, et al. Pickering emulsions with ethiodized oil and nanoparticles for slow release of intratumoral anti-CTLA4 immune checkpoint antibodies[J]. J Immunother Cancer, 2020, 8(1): e000579. DOI: 10.1136/jitc-2020-000579. |
[37] | Grindel AL, Fretellier N, Soares M, et al. Antitumoral effect of local injection of TLR-9 agonist emulsified in lipiodol with systemic anti-PD-1 in a murine model of colorectal carcinoma[J]. Front Immunol, 2023, 14: 1272246. DOI: 10.3389/fimmu.2023.1272246. |
[38] | Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery[J]. Adv Healthc Mater, 2021, 10(1): e2001341. DOI: 10.1002/adhm.202001341. |
[39] | Luo FQ, Xu W, Zhang JY, et al. An injectable nanocomposite hydrogel improves tumor penetration and cancer treatment efficacy[J]. Acta Biomater, 2022, 147: 235-244. DOI: 10.1016/j.actbio.2022.05.042. |
[40] | Wang F, Su H, Xu D, et al. Tumour sensitization via the extended intratumoural release of a sting agonist and camptothecin from a self-assembled hydrogel[J]. Nat Biomed Eng, 2020, 4(11): 1090-1101. DOI: 10.1038/s41551-020-0597-7. |
[41] | Jiang Z, Fu Y, Shen H. Development of intratumoral drug delivery based strategies for antitumor therapy[J]. Drug Des Devel Ther, 2024, 18: 2189-2202. DOI: 10.2147/DDDT.S467835. |
[42] | Bahrom H, Goncharenko AA, Fatkhutdinova LI, et al. Controllable synthesis of calcium carbonate with different geometry: comprehensive analysis of particle formation, cellular uptake, and biocompati-bility[J]. ACS Sustain Chem Eng, 2019, 7(23): 19142-19156. DOI: 10.1021/acssuschemeng.9b05128. |
[43] | Liu JQ, Zhang C, Zhang X, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy[J]. J Control Release, 2022, 345: 306-313. DOI: 10.1016/j.jconrel.2022.03.021. |
[44] | Bahmani B, Gong H, Luk BT, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors[J]. Nat Commun, 2021, 12(1): 1999. DOI: 10.1038/s41467-021-22311-z. |
[45] | Thong NG, Hanh VTH, Bui TT, et al. Investigation on modeling and correlating drug release profiles in the accelerated and real-time conditions to formulate leuprolide acetate-loaded biodegradable microspheres[J]. J Drug Deliv Sci Technol, 2023, 86: 104529. DOI: 10.1016/j.jddst.2023.104529. |
[46] | Ni GL, Yang G, He Y, et al. Uniformly sized hollow microspheres loaded with polydopamine nanoparticles and doxorubicin for local chemo-photothermal combination therapy[J]. Chemical Engineering Journal, 2020, 379: 122317. DOI: 10.1016/j.cej.2019.122317. |
[47] | Yang X, Yang Y, Jia Q, et al. Preparation and evaluation of irinotecan poly (lactic-co-glycolic acid) nanoparticles for enhanced anti-tumor therapy[J]. AAPS PharmSciTech, 2019, 20(3): 133. DOI: 10.1208/s12249-019-1327-x. |
[48] | Huang A, Pressnall MM, Lu R, et al. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials[J]. J Control Release, 2020, 326: 203-221. DOI: 10.1016/j.jconrel.2020.06.029. |
[49] | Smith T, Kaufman CS. Ultrasound guided thyroid biopsy[J]. Tech Vasc Interv Radiol, 2021, 24(3): 100768. DOI: 10.1016/j.tvir.2021.100768. |
[50] |
Erinjeri JP, Fine GC, Adema GJ, et al. Immunotherapy and the interventional oncologist: challenges and opportunities—a society of interventional oncology white paper[J]. Radiology, 2019, 292(1): 25-34. DOI: 10.1148/radiol.2019182326.
pmid: 31012818 |
[51] | Sheth RA, Wehrenberg-Klee E, Patel SP, et al. Intratumoral injection of immunotherapeutics: state of the art and future directions[J]. Radiology, 2024, 312(1): e232654. DOI: 10.1148/radiol.232654. |
[52] | Sheth RA, Murthy R, Hong DS, et al. Assessment of image-guided intratumoral delivery of immunotherapeutics in patients with cancer[J]. JAMA Netw Open, 2020, 3(7): e207911. DOI: 10.1001/jamanetworkopen.2020.7911. |
[1] | 王逸, 王强力, 张甲, 杨懿瑾, 王盛. 结直肠癌肝转移患者组织中SUCNR1和YBX1的表达与临床病理特征及预后的关系[J]. 国际肿瘤学杂志, 2025, 52(3): 152-157. |
[2] | 韩涛, 贾沛沛, 鲁静. iRhom1、iRhom2、TNF-α水平对宫颈癌患者预后的预测价值[J]. 国际肿瘤学杂志, 2025, 52(3): 158-162. |
[3] | 李志远, 贾秀红. 铜死亡在肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 163-168. |
[4] | 张百红, 岳红云. 抗肿瘤药物递送系统研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 176-179. |
[5] | 王智颖, 盛立军. 外周血标志物在非小细胞肺癌免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(3): 180-185. |
[6] | 王菲菲, 赵守香, 李颖, 王涛, 郭琴, 田胜南, 蔡晓珊. 气球状细胞黑色素瘤肝转移1例[J]. 国际肿瘤学杂志, 2025, 52(3): 190-192. |
[7] | 邢辉, 谭莹, 王秀珍, 李瑞, 刘霞. NLR、TNF-α水平对巨块型肝癌患者TACE联合微波消融治疗效果的预测分析[J]. 国际肿瘤学杂志, 2025, 52(2): 101-106. |
[8] | 王熙博, 田宝文, 陈士巧. Breg细胞在肿瘤免疫逃逸中的机制及相关治疗靶点[J]. 国际肿瘤学杂志, 2025, 52(2): 107-112. |
[9] | 叶永英, 邹艳, 陈天明, 吴伟莉. 时钟基因Period家族在头颈鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2025, 52(2): 113-118. |
[10] | 陈丹蕾, 邓隽军, 李淼. 循环肿瘤细胞在肺癌中的临床应用进展[J]. 国际肿瘤学杂志, 2025, 52(2): 119-123. |
[11] | . 胃癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(2): 65-66. |
[12] | 王智宝, 李广现, 张昕昕, 崔伟, 张微. MRI联合血清lncRNA KCNQ1OT1、miR-204-5p对乳腺癌腋窝淋巴结转移的预测价值[J]. 国际肿瘤学杂志, 2025, 52(2): 89-93. |
[13] | 姬海涛, 王延峰, 刘永成, 郝楠. 基于生物信息学分析DHCR7在胃癌中的表达及临床意义[J]. 国际肿瘤学杂志, 2025, 52(2): 94-100. |
[14] | . 食管癌筛查与早诊早治方案(2024年版)[J]. 国际肿瘤学杂志, 2025, 52(1): 1-2. |
[15] | 谭荣坚, 欧雯婷, 翟嘉伟, 全祯豪, 孙利君, 周才进. RRM2通过调控CDK1对胃癌细胞恶性生物学行为及有氧糖酵解的影响[J]. 国际肿瘤学杂志, 2025, 52(1): 23-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||