
国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (6): 377-380.doi: 10.3760/cma.j.cn371439-20200923-00073
收稿日期:2020-09-23
									
				
											修回日期:2020-10-16
									
				
									
				
											出版日期:2021-06-08
									
				
											发布日期:2021-06-24
									
			通讯作者:
					康晓静
											E-mail:drkangxj666@163.com
												基金资助:
        
               		Wang Fang, Wang Peng, Kang Xiaojing(
)
			  
			
			
			
                
        
    
Received:2020-09-23
									
				
											Revised:2020-10-16
									
				
									
				
											Online:2021-06-08
									
				
											Published:2021-06-24
									
			Contact:
					Kang Xiaojing   
											E-mail:drkangxj666@163.com
												Supported by:摘要:
卡波西肉瘤是一种软组织多发性色素性血管瘤,其病因尚不明确,其发生发展与卡波西肉瘤相关疱疹病毒相关。卡波西肉瘤相关疱疹病毒可通过干扰模式识别受体、补体系统或直接作用于免疫细胞逃避宿主免疫系统,从而在卡波西肉瘤的发生与发展中起重要作用,免疫调节剂、靶向药物及疫苗等免疫治疗有望成为预防及治疗卡波西肉瘤的新方法。
王芳, 王鹏, 康晓静. 卡波西肉瘤相关疱疹病毒与宿主免疫在卡波西肉瘤发病中的作用机制及免疫治疗[J]. 国际肿瘤学杂志, 2021, 48(6): 377-380.
Wang Fang, Wang Peng, Kang Xiaojing. Mechanism and immunotherapy of Kaposi sarcoma-associated herpesvirus and host immunity in the pathogenesis of Kaposi sarcoma[J]. Journal of International Oncology, 2021, 48(6): 377-380.
| [1] |  
											  Yarchoan R, Uldrick TS. HIV-associated cancers and related diseases[J]. N Engl J Med, 2018,378(11):1029-1041. DOI: 10.1056/NEJMra1615896. 
											 												 doi: 10.1056/NEJMra1615896  | 
										
| [2] |  
											  Cesarman E, Damania B, Krown SE, et al. Kaposi sarcoma[J]. Nat Rev Dis Primers, 2019,5(1):9. DOI: 10.1038/s41572-019-0060-9. 
											 												 doi: 10.1038/s41572-019-0060-9 pmid: 30705286  | 
										
| [3] |  
											  Wong JP, Damania B. Modulation of oncogenic signaling networks by Kaposi's sarcoma-associated herpesvirus[J]. Biol Chem, 2017,398(8):911-918. DOI: 10.1515/hsz-2017-0101. 
											 												 doi: 10.1515/hsz-2017-0101  | 
										
| [4] |  
											  Zhang H, Ni G, Damania B. ADAR1 facilitates KSHV lytic reactivation by modulating the RLR-dependent signaling pathway[J]. Cell Rep, 2020,31(4):107564. DOI: 10.1016/j.celrep.2020.107564. 
											 												 doi: 10.1016/j.celrep.2020.107564  | 
										
| [5] |  
											  Broussard G, Damania B. KSHV: immune modulation and immunotherapy[J]. Front Immunol, 2020,10:3084. DOI: 10.3389/fimmu.2019.03084. 
											 												 doi: 10.3389/fimmu.2019.03084  | 
										
| [6] |  
											  Uppal T, Sarkar R, Dhelaria R, et al. Role of pattern recognition receptors in KSHV infection[J]. Cancers (Basel), 2018,10(3):85. DOI: 10.3390/cancers10030085. 
											 												 doi: 10.3390/cancers10030085  | 
										
| [7] |  
											  Sharma NR, Majerciak V, Kruhlak MJ, et al. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation[J]. PLoS Pathog, 2017,13(10):e1006677. DOI: 10.1371/journal.ppat.1006677. 
											 												 doi: 10.1371/journal.ppat.1006677  | 
										
| [8] |  
											  Griffin C, Eter L, Lanzetta N, et al. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice [J]. J Biol Chem, 2018,293(23):8775-8786. DOI: 10.1074/jbc.RA117.001526. 
											 												 doi: 10.1074/jbc.RA117.001526  | 
										
| [9] |  
											  Lee HR, Amatya R, Jung JU. Multi-step regulation of innate immune signaling by Kaposi's sarcoma-associated herpesvirus[J]. Virus Res, 2015,209:39-44. DOI: 10.1016/j.virusres.2015.03.004. 
											 												 doi: 10.1016/j.virusres.2015.03.004  | 
										
| [10] |  
											  Zhao Q, Liang D, Sun R, et al. Kaposi's sarcoma-associated herpesvirus-encoded replication and transcription activator impairs innate immunity via ubiquitin-mediated degradation of myeloid differentiation factor 88[J]. J Virol, 2015,89(1):415-427. DOI: 10.1128/JVI.02591-14. 
											 												 doi: 10.1128/JVI.02591-14  | 
										
| [11] |  
											  Lingel A, Ehlers E, Wang Q, et al. Kaposi's sarcoma-associated herpesvirus reduces cellular myeloid differentiation primary-response gene 88 (MyD88) expression via modulation of its RNA[J]. J Virol, 2016,90(1):180-188. DOI: 10.1128/JVI.02342-15. 
											 												 doi: 10.1128/JVI.02342-15  | 
										
| [12] |  
											  Rex DAB, Agarwal N, Prasad TSK, et al. A comprehensive pathway map of IL-18-mediated signalling[J]. J Cell Commun Signal, 2020,14(2):257-266. DOI: 10.1007/s12079-019-00544-4. 
											 												 doi: 10.1007/s12079-019-00544-4 pmid: 31863285  | 
										
| [13] |  
											  Ma Z, Hopcraft SE, Yang F, et al. NLRX1 negatively modulates type Ⅰ IFN to facilitate KSHV reactivation from latency[J]. PLoS Pathog, 2017,13(5):e1006350. DOI: 10.1371/journal.ppat.1006350. 
											 												 doi: 10.1371/journal.ppat.1006350  | 
										
| [14] |  
											  Baillet N, Krieger S, Carnec X, et al. E3 ligase ITCH interacts with the z matrix protein of lassa and mopeia viruses and is required for the release of infectious particles[J]. Viruses, 2019,12(1):49. DOI: 10.3390/v12010049. 
											 												 doi: 10.3390/v12010049  | 
										
| [15] |  
											  Zhang G, Chan B, Samarina N, et al. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus lana recruit and antagonize the innate immune DNA sensor cGAS[J]. Proc Natl Acad Sci U S A, 2016,113(8):E1034-E1043. DOI: 10.1073/pnas.1516812113. 
											 												 doi: 10.1073/pnas.1516812113  | 
										
| [16] |  
											  Subramanian G, Kuzmanovic T, Zhang Y, et al. A new mechanism of interferon's antiviral action: induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, TDRD7[J]. PLoS Pathog, 2018,14(1):e1006877. DOI: 10.1371/journal.ppat.1006877. 
											 												 doi: 10.1371/journal.ppat.1006877  | 
										
| [17] |  
											  Manes TD, Hoer S, Muller WA, et al. Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins block distinct steps in transendo-thelial migration of effector memory CD4+ T cells by targeting diffe-rent endothelial proteins [J]. J Immunol, 2010,184(9):5186-5192. DOI: 10.4049/jimmunol.0902938. 
											 												 doi: 10.4049/jimmunol.0902938  | 
										
| [18] |  
											  Qin J, Li W, Gao SJ, et al. KSHV microRNAs: tricks of the devil[J]. Trends Microbiol, 2017,25(8):648-661. DOI: 10.1016/j.tim.2017.02.002. 
											 												 doi: 10.1016/j.tim.2017.02.002  | 
										
| [19] | De Pelsmaeker S, Romero N, Vitale M, et al. Herpesvirus evasion of natural killer cells[J]. J Virol, 2018,92(11):e02105-e02117. DOI: 10.1128/JVI.02105-17. | 
| [20] |  
											  Lee MS, Jones T, Song DY, et al. Exploitation of the complement system by oncogenic Kaposi's sarcoma-associated herpesvirus for cell survival and persistent infection[J]. PLoS Pathog, 2014,10(9):e1004412. DOI: 10.1371/journal.ppat.1004412. 
											 												 doi: 10.1371/journal.ppat.1004412  | 
										
| [21] |  
											  Jeon H, Yoo SM, Choi HS, et al. Extracellular vesicles from kshv-infected endothelial cells activate the complement system[J]. Oncotarget, 2017,8(59):99841-99860. DOI: 10.18632/oncotarget.21668. 
											 												 doi: 10.18632/oncotarget.v8i59  | 
										
| [22] |  
											  Yoo SM, Lee MS. Kaposi's sarcoma-associated herpesvirus and host interaction by the complement system[J]. Pathogens, 2020,9(4):260. DOI: 10.3390/pathogens9040260. 
											 												 doi: 10.3390/pathogens9040260  | 
										
| [23] |  
											  Davis DA, Mishra S, Anagho HA, et al. Restoration of immune surface molecules in Kaposi sarcoma-associated herpes virus infected cells by lenalidomide and pomalidomide[J]. Oncotarget, 2017,8(31):50342-50358. DOI: 10.18632/oncotarget.17960. 
											 												 doi: 10.18632/oncotarget.v8i31  | 
										
| [24] |  
											  Polizzotto MN, Uldrick TS, Wyvill KM, et al. Pomalidomide for symptomatic Kaposi's sarcoma in people with and without HIV infection: a phase Ⅰ/Ⅱ study[J]. J Clin Oncol, 2016,34(34):4125-4131. DOI: 10.1200/JCO.2016.69.3812. 
											 												 doi: 10.1200/JCO.2016.69.3812  | 
										
| [25] |  
											  Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): a versatile receptor for immune-based therapy[J]. Semin Immunol, 2019,42:101298. DOI: 10.1016/j.smim.2019.101298. 
											 												 doi: 10.1016/j.smim.2019.101298  | 
										
| [26] |  
											  Dupin N. Update on oncogenesis and therapy for Kaposi sarcoma[J]. Curr Opin Oncol, 2020,32(2):122-128. DOI: 10.1097/CCO.0000000000000601. 
											 												 doi: 10.1097/CCO.0000000000000601  | 
										
| [27] | Host KM, Jacobs SR, West JA, et al. Kaposi's sarcoma-associated herpesvirus increases PD-L1 and proinflammatory cytokine expression in human monocytes[J]. mBio, 2017,8(5):e00917. DOI: 10.1128/mBio.00917-17. | 
| [28] |  
											  Galanina N, Goodman AM, Cohen PR, et al. Successful treatment of HIV-associated Kaposi sarcoma with immune checkpoint blockade[J]. Cancer Immunol Res, 2018,6(10):1129-1135. DOI: 10.1158/2326-6066.CIR-18-0121. 
											 												 doi: 10.1158/2326-6066.CIR-18-0121 pmid: 30194084  | 
										
| [29] |  
											  Fujiwara Y, Sun Y, Torphy RJ, et al. Pomalidomide inhibits PD-L1 induction to promote antitumor immunity[J]. Cancer Res, 2018,78(23):6655-6665. DOI: 10.1158/0008-5472.CAN-18-1781. 
											 												 doi: 10.1158/0008-5472.CAN-18-1781  | 
										
| [30] |  
											  Uldrick TS, Goncalves PH, Abdul-Hay M, et al. Assessment of the safety of pembrolizumab in patients with HIV and advanced cancer—a phase 1 study[J]. JAMA Oncol, 2019,5(9):1332-1339. DOI: 10.1001/jamaoncol.2019.2244. 
											 												 doi: 10.1001/jamaoncol.2019.2244  | 
										
| [31] |  
											  Barasa AK, Ye P, Phelps M, et al. BALB/c mice immunized with a combination of virus-like particles incorporating Kaposi sarcoma-associated herpesvirus (KSHV) envelope glycoproteins gpK8.1, gB, and gH/gL induced comparable serum neutralizing antibody activity to UV-inactivated KSHV[J]. Oncotarget, 2017,8(21):34481-34497. DOI: 10.18632/oncotarget.15605. 
											 												 doi: 10.18632/oncotarget.15605 pmid: 28404899  | 
										
| [32] |  
											  Mulama DH, Mutsvunguma LZ, Totonchy J, et al. A multivalent Kaposi sarcoma-associated herpesvirus-like particle vaccine capable of eliciting high titers of neutralizing antibodies in immunized rabbits[J]. Vaccine, 2019,37(30):4184-4194. DOI: 10.1016/j.vaccine.2019.04.071. 
											 												 doi: S0264-410X(19)30559-6 pmid: 31201053  | 
										
| [1] | 杨蜜, 别俊, 张加勇, 邓佳秀, 唐组阁, 卢俊. 局部晚期可切除食管癌新辅助治疗疗效及预后分析[J]. 国际肿瘤学杂志, 2024, 51(6): 332-337. | 
| [2] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. | 
| [3] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. | 
| [4] | 王子豪, 王宇, 杨鑫, 何艺, 莫兴奎, 袁涛. 铁死亡在骨肉瘤中的分子机制及相关治疗的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 239-244. | 
| [5] | 姚昌菊, 朱治法, 张梅. 晚期腹膜后去分化脂肪肉瘤1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 254-256. | 
| [6] | 李济时, 陆钊群, 刘俊茹, 吕建勋, 陈霜, 沈琳, 徐志渊, 吴平安. 新辅助放疗联合部分喉切除术治疗喉滑膜肉瘤1例并文献复习[J]. 国际肿瘤学杂志, 2024, 51(2): 123-125. | 
| [7] | 刘金立, 徐建利, 徐腾飞, 张玉杰, 辛晓文. 以凝血功能异常为首发表现的朗格汉斯细胞肉瘤1例[J]. 国际肿瘤学杂志, 2023, 50(9): 574-576. | 
| [8] | 李开春, 丁昌利, 于文艳. 安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. | 
| [9] | 吕璐, 孙鹏飞. 肠道菌群与宫颈癌[J]. 国际肿瘤学杂志, 2023, 50(6): 373-376. | 
| [10] | 魏雪, 张万芳, 王尤, 刘苗苗, 周福祥. 心脏血管肉瘤1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(4): 252-254. | 
| [11] | 黄华玉, 龚虹云, 宋启斌. 胸部放疗联合免疫治疗时代肺炎发生的影响因素[J]. 国际肿瘤学杂志, 2023, 50(2): 102-106. | 
| [12] | 张雨潇, 张连生, 李莉娟. 新型免疫检查点TIGIT在多发性骨髓瘤免疫治疗中的研究现状与应用前景[J]. 国际肿瘤学杂志, 2023, 50(2): 122-125. | 
| [13] | 张碧霞, 丁江华. EGFR突变型非小细胞肺癌EGFR-TKI获得性耐药后免疫治疗现状[J]. 国际肿瘤学杂志, 2023, 50(2): 97-101. | 
| [14] | 马小平, 常君丽, 孙星媛, 杨燕萍. 长非编码RNA调控骨肉瘤耐药机制的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 51-54. | 
| [15] | 曹纯, 曾琴, 张天围. 头颈部滑膜肉瘤1例[J]. 国际肿瘤学杂志, 2023, 50(1): 60-61. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||