
国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (11): 706-711.doi: 10.3760/cma.j.cn371439-20240328-00119
收稿日期:2024-03-28
									
				
											修回日期:2024-07-12
									
				
									
				
											出版日期:2024-11-08
									
				
											发布日期:2024-12-26
									
			通讯作者:
					高晓玲
											E-mail:937658284@qq.com
												基金资助:Received:2024-03-28
									
				
											Revised:2024-07-12
									
				
									
				
											Online:2024-11-08
									
				
											Published:2024-12-26
									
			Contact:
					Gao Xiaoling   
											E-mail:937658284@qq.com
												Supported by:摘要:
含有MARVEL跨膜结构域的趋化样因子基因(CMTM)家族在肿瘤发生、发展、转移和耐药方面起着至关重要的作用。CMTM6和CMTM4是调节程序性死亡受体配体1(PD-L1)稳定性的关键蛋白,尤其在肿瘤免疫治疗耐药性中发挥着重要作用。目前,CMTM6和CMTM4与肿瘤相关的详尽分子机制尚未完全明确。深入研究CMTM4和CMTM6在肿瘤中的表达、生物学作用以及调控机制将为肿瘤的诊断、治疗以及预测预后等方面提供新的思路和靶点。
马明珠, 高晓玲. CMTM6和CMTM4在肿瘤发生、发展及预后中的作用[J]. 国际肿瘤学杂志, 2024, 51(11): 706-711.
Ma Mingzhu, Gao Xiaoling. Role of CMTM6 and CMTM4 protein in tumorigenesis, development and prognosis[J]. Journal of International Oncology, 2024, 51(11): 706-711.
| [1] |  
											  Han W, Ding P, Xu M, et al.  Identification of eight genes encoding chemokine-like factor superfamily members 1-8 (CKLFSF1-8) by in silico cloning and experimental validation[J]. Genomics, 2003, 81(6): 609-617. DOI: 10.1016/s0888-7543(03)00095-8. 
											 												 pmid: 12782130  | 
										
| [2] | Wang L, Wu C, Zheng Y, et al. Molecular cloning and characterization of chemokine-like factor super family member 1 (CKLFSF1), a novel human gene with at least 23 alternative splicing isoforms in testis tissue[J]. Int J Biochem Cell Biol, 2004, 36(8): 1492-1501. DOI: 10.1016/j.biocel.2003.11.017. | 
| [3] | Shi S, Rui M, Han W, et al. CKLFSF2 is highly expressed in testis and can be secreted into the seminiferous tubules[J]. Int J Biochem Cell Biol, 2005, 37(8): 1633-1640. DOI: 10.1016/j.biocel.2004.04.028. | 
| [4] |  
											  Zhong J, Wang Y, Qiu X, et al.  Characterization and expression profile of CMTM3/CKLFSF3[J]. J Biochem Mol Biol, 2006, 39(5): 537-545. DOI: 10.5483/BMBRep.2006.39.5.537. 
											 												 pmid: 17002874  | 
										
| [5] |  
											  Chrifi I, Louzao-Martinez L, Brandt M, et al.  CMTM3 (CKLF-Like marvel transmembrane domain 3) mediates angiogenesis by regula-ting cell surface availability of VE-cadherin in endothelial adherens junctions[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1098-1114. DOI: 10.1161/atvbaha.116.308792. 
											 												 pmid: 28428220  | 
										
| [6] | Mezzadra R, Sun C, Jae LT, et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators[J]. Nature, 2017, 549(7670): 106-110. DOI: 10.1038/nature23669. | 
| [7] | Zhang H, Nan X, Li X, et al. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma[J]. Biochem Biophys Res Commun, 2014, 447(2): 304-310. DOI: 10.1016/j.bbrc.2014.03.158. | 
| [8] |  
											  Liu B, Su Y, Li T, et al.  CMTM7 knockdown increases tumorigenicity of human non-small cell lung cancer cells and EGFR-AKT signaling by reducing Rab5 activation[J]. Oncotarget, 2015, 6(38): 41092-41107. DOI: 10.18632/oncotarget.5732. 
											 												 pmid: 26528697  | 
										
| [9] |  
											  Shi W, Zhang C, Ning Z, et al.  CMTM8 as an LPA1-associated partner mediates lysophosphatidic acid-induced pancreatic cancer metastasis[J]. Ann Transl Med, 2021, 9(1): 42. DOI: 10.21037/ATM-20-1013. 
											 												 pmid: 33553335  | 
										
| [10] |  
											  Chen L, Yang QC, Li YC, et al.  Targeting CMTM6 suppresses stem cell-like properties and enhances antitumor immunity in head and neck squamous cell carcinoma[J]. Cancer Immunol Res, 2020, 8(2): 179-191. DOI: 10.1158/2326-6066.CIR-19-0394. 
											 												 pmid: 31771985  | 
										
| [11] |  
											  Wei L, Wei Q, Yang X, et al.  CMTM6 knockdown prevents glioma progression by inactivating the mTOR pathway[J]. Ann Transl Med, 2022, 10(4): 181. DOI: 10.21037/atm-21-6894. 
											 												 pmid: 35280358  | 
										
| [12] | Peng QH, Wang CH, Chen HM, et al. CMTM6 and PD-L1 co-expression is associated with an active immune microenvironment and a favorable prognosis in colorectal cancer[J]. J Immunother Cancer, 2021, 9(2): e001638. DOI: 10.1136/jitc-2020-001638. | 
| [13] | Yin B, Ding J, Hu H, et al. Overexpressed CMTM6 improves prognosis and associated with immune infiltrates of ovarian cancer[J]. Front Mol Biosci, 2022, 9: 769032. DOI: 10.3389/fmolb.2022.769032. | 
| [14] | Zhang S, Yan Q, Wei S, et al. CMTM6 and PD-1/PD-L1 overexpression is associated with the clinical characteristics of malignancy in oral squamous cell carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2021, 132(2): 202-209. DOI: 10.1016/j.oooo.2021.02.019. | 
| [15] | Liu LL, Zhang SW, Chao X, et al. Coexpression of CMTM6 and PD-L1 as a predictor of poor prognosis in macrotrabecular-massive hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2021, 70(2): 417-429. DOI: 10.1007/s00262-020-02691-9. | 
| [16] | Wang H, Fan Y, Chen W, et al. Loss of CMTM6 promotes DNA damage-induced cellular senescence and antitumor immunity[J]. Oncoimmunology, 2022, 11(1): 2011673. DOI: 10.1080/2162402X.2021.2011673. | 
| [17] |  
											  Plate M, Li T, Wang Y, et al.  Identification and characterization of CMTM4, a novel gene with inhibitory effects on HeLa cell growth through Inducing G2/M phase accumulation[J]. Mol Cells, 2010, 29(4): 355-361. DOI: 10.1007/s10059-010-0038-7. 
											 												 pmid: 20213316  | 
										
| [18] | Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing[J]. Signal Transduct Target Ther, 2020, 5(1): 166. DOI: 10.1038/s41392-020-00280-x. | 
| [19] |  
											  Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013. 
											 												 pmid: 21376230  | 
										
| [20] |  
											  Wang X, Guo G, Guan H, et al.  Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 87. DOI: 10.1186/s13046-019-1085-3. 
											 												 pmid: 30777100  | 
										
| [21] |  
											  Mo L, Chen Q, Zhang X, et al.  Depletion of regulatory T cells by anti-ICOS antibody enhances anti-tumor immunity of tumor cell vaccine in prostate cancer[J]. Vaccine, 2017, 35(43): 5932-5938. DOI: 10.1016/j.vaccine.2017.08.093. 
											 												 pmid: 28923424  | 
										
| [22] |  
											  Binnewies M, Roberts EW, Kersten K, et al.  Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018, 24(5): 541-550. DOI: 10.1038/s41591-018-0014-x. 
											 												 pmid: 29686425  | 
										
| [23] |  
											  Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy[J]. Cell Death Dis, 2018, 9(2): 115. DOI: 10.1038/s41419-017-0061-0. 
											 												 pmid: 29371595  | 
										
| [24] |  
											  Chen Y, Song Y, Du W, et al.  Tumor-associated macrophages: an accomplice in solid tumor progression[J]. J Biomed Sci, 2019, 26(1): 78. DOI: 10.1186/s12929-019-0568-z. 
											 												 pmid: 31629410  | 
										
| [25] |  
											  Yaseen MM, Abuharfeil NM, Darmani H. CMTM6 as a master regulator of PD-L1[J]. Cancer Immunol Immunother, 2022, 71(10): 2325-2340. DOI: 10.1007/s00262-022-03171-y. 
											 												 pmid: 35294592  | 
										
| [26] |  
											  Zugazagoitia J, Liu Y, Toki M, et al.  Quantitative assessment of CMTM6 in the tumor microenvironment and association with response to PD-1 pathway blockade in advanced-stage non-small cell lung cancer[J]. J Thorac Oncol, 2019, 14(12): 2084-2096. DOI: 10.1016/j.jtho.2019.09.014. 
											 												 pmid: 31605795  | 
										
| [27] |  
											  Pang X, Wang SS, Zhang M, et al.  OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway[J]. Cancer Immunol Immunother, 2021, 70(4): 1015-1029. DOI: 10.1007/s00262-020-02741-2. 
											 												 pmid: 33104837  | 
										
| [28] |  
											  Wu X, Lan X, Hu W, et al.  CMTM6 expression in M2 macrophages is a potential predictor of PD-1/PD-L1 inhibitor response in colorectal cancer[J]. Cancer Immunol Immunother, 2021, 70(11): 3235-3248. DOI: 10.1007/s00262-021-02931-6. 
											 												 pmid: 33818637  | 
										
| [29] | Baine MJ, Chakraborty S, Smith LM, et al. Transcriptional profiling of peripheral blood mononuclear cells in pancreatic cancer patients identifies novel genes with potential diagnostic utility[J]. PLoS One, 2011, 6(2): e17014. DOI: 10.1371/journal.pone.0017014. | 
| [30] | Liu Y, Guo J, Huang L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies[J]. The-ranostics, 2020, 10(7): 3099-3117. DOI: 10.7150/thno.42998. | 
| [31] |  
											  Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity[J]. Int J Cancer, 2010, 127(4): 759-767. DOI: 10.1002/ijc.25429. 
											 												 pmid: 20518016  | 
										
| [32] | He J, Miao R, Chen Y, et al. The dual role of regulatory T cells in hepatitis B virus infection and related hepatocellular carcinoma[J]. Immunology, 2024, 171(4): 445-463. DOI: 10.1111/imm.13738. | 
| [33] |  
											  Guan X, Zhang C, Zhao J, et al.  CMTM6 overexpression is associated with molecular and clinical characteristics of malignancy and predicts poor prognosis in gliomas[J]. EBioMedicine, 2018, 35: 233-243. DOI: 10.1016/j.ebiom.2018.08.012. 
											 												 pmid: 30131308  | 
										
| [34] |  
											  Schuler G. Dendritic cells in cancer immunotherapy[J]. Eur J Immunol, 2010, 40(8): 2123-2130. DOI: 10.1002/eji.201040630. 
											 												 pmid: 20853498  | 
										
| [35] | Melms JC, Ho P, Rogava M, et al. From patient tissue correlates to molecular mechanisms of cancer immune evasion: the emerging role of CD58 and PD-L1 co-regulation via CMTM6[J]. Genes Immun. 2024, 25(1): 82-84. DOI: 10.1038/s41435-023-00224-9. | 
| [36] |  
											  Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review[J]. J Cell Physiol, 2019, 234(6): 8509-8521. DOI: 10.1002/jcp.27782. 
											 												 pmid: 30520029  | 
										
| [37] | Koh YW, Han JH, Haam S, et al. Increased CMTM6 can predict the clinical response to PD-1 inhibitors in non-small cell lung cancer patients[J]. Oncoimmunology, 2019, 8(10): e1629261. DOI: 10.1080/2162402X.2019.1629261. | 
| [38] | Shang X, Li J, Wang H, et al. CMTM6 is positively correlated with PD-L1 expression and immune cells infiltration in lung squamous carcinoma[J]. Int Immunopharmacol, 2020, 88: 106864. DOI: 10.1016/j.intimp.2020.106864. | 
| [39] | Wang Z, Peng Z, Liu Q, et al. Co-expression with membrane CMTM6/4 on tumor epithelium enhances the prediction value of PD-L1 on anti-PD-1/L1 therapeutic efficacy in gastric adenocarcinoma[J]. Cancers (Basel), 2021, 13(20): 5175. DOI: 10.3390/cancers13205175. | 
| [40] | Burr ML, Sparbier CE, Chan YC, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity[J]. Nature, 2017, 549(7670): 101-105. DOI: 10.1038/nature23643. | 
| [41] |  
											  Ai L, Xu A, Xu J. Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond[J]. Adv Exp Med Biol, 2020, 1248: 33-59. DOI: 10.1007/978-981-15-3266-5_3. 
											 												 pmid: 32185706  | 
										
| [42] |  
											  Ruivo CF, Adem B, Silva M, et al.  The biology of cancer exosomes: insights and new perspectives[J]. Cancer Res, 2017, 77(23): 6480-6488. DOI: 10.1158/0008-5472.CAN-17-0994. 
											 												 pmid: 29162616  | 
										
| [43] |  
											  Morrissey SM, Yan J. Exosomal PD-L1: roles in tumor progression and immunotherapy[J]. Trends Cancer, 2020, 6(7): 550-558. DOI: 10.1016/j.trecan.2020.03.002. 
											 												 pmid: 32610067  | 
										
| [44] |  
											  Zhu X, Zhang S, Tan S, et al.  Expression of CMTM4 shows clinical significance in lung cancer[J]. Transl Cancer Res, 2020, 9(10): 6214-6220. DOI: 10.21037/tcr-20-1254. 
											 												 pmid: 35117232  | 
										
| [45] | Chui NN, Cheu JW, Yuen VW, et al. Inhibition of CMTM4 sensitizes cholangiocarcinoma and hepatocellular carcinoma to T cell-mediated antitumor immunity through PD-L1[J]. Hepatol Commun, 2022, 6(1): 178-193. DOI: 10.1002/hep4.1682. | 
| [46] |  
											  Tan S, Guo X, Bei C, et al.  Prognostic significance and immune characteristics of CMTM4 in hepatocellular carcinoma[J]. BMC Cancer, 2022, 22(1): 905. DOI: 10.1186/s12885-022-09999-y. 
											 												 pmid: 35986302  | 
										
| [47] | Bei C, Zhang Y, Wei R, et al. Clinical significance of CMTM4 expression in hepatocellular carcinoma[J]. Onco Targets Ther, 2017, 10: 5439-5443. DOI: 10.2147/OTT.S149786. | 
| [48] | Zhou HQ, Li JH, Liu LW, et al. Increased CMTM4 mRNA expression predicts a poor prognosis in patients with hepatocellular carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2020, 19(6): 596-601. DOI: 10.1016/j.hbpd.2020.06.004. | 
| [49] | Xue H, Li T, Wang P, et al. CMTM4 inhibits cell proliferation and migration via AKT, ERK1/2, and STAT3 pathway in colorectal cancer[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(9): 915-924. DOI: 10.1093/abbs/gmz084. | 
| [50] |  
											  Li T, Cheng Y, Wang P, et al.  CMTM4 is frequently downregulated and functions as a tumour suppressor in clear cell renal cell carcinoma[J]. J Exp Clin Cancer Res, 2015, 34: 122. DOI: 10.1186/s13046-015-0236-4. 
											 												 pmid: 26474560  | 
										
| [51] | Miao B, Hu Z, Mezzadra R, et al. CMTM6 shapes antitumor T cell response through modulating protein expression of CD58 and PD-L1[J]. Cancer Cell, 2023, 41(10): 1817-1828.e9. DOI: 10.1016/j.ccell.2023.08.008. | 
| [52] |  
											  Li M, Guo H, Wang Q, et al.  Pancreatic stellate cells derived exosomal miR-5703 promotes pancreatic cancer by downregulating CMTM4 and activating PI3K/Akt pathway[J]. Cancer Lett, 2020, 490: 20-30. DOI: 10.1016/j.canlet.2020.06.009. 
											 												 pmid: 32585413  | 
										
| [53] | Wu F, Yang J, Shang G, et al. Exosomal miR-224-5p from colorectal cancer cells promotes malignant transformation of human normal colon epithelial cells by promoting cell proliferation through downregulation of CMTM4[J]. Oxid Med Cell Longev, 2022, 2022: 5983629. DOI: 10.1155/2022/5983629. | 
| [54] |  
											  Zhang H, Zhang X, Yuan X, et al.  MicroRNA-205 inhibits renal cells apoptosis via targeting CMTM4[J]. Iran J Basic Med Sci, 2015, 18(10): 1020-1026. DOI: 10.22038/IJBMS.2015.5467. 
											 												 pmid: 26730338  | 
										
| [55] |  
											  Zhao W, Zhao F, Yang K, et al.  An immunophenotyping of renal clear cell carcinoma with characteristics and a potential therapeutic target for patients insensitive to immune checkpoint blockade[J]. J Cell Biochem, 2019, 120(8): 13330-13341. DOI: 10.1002/jcb.28607. 
											 												 pmid: 30916827  | 
										
| [56] | Mohapatra P, Shriwas O, Mohanty S, et al. CMTM6 drives cisplatin resistance by regulating Wnt signaling through the ENO-1/AKT/GSK3β axis[J]. JCI Insight, 2021, 6(4): 143643. DOI: 10.1172/jci.insight.143643. | 
| [57] |  
											  Xing F, Gao H, Chen G, et al.  CMTM6 overexpression confers trastuzumab resistance in HER2-positive breast cancer[J]. Mol Cancer, 2023, 22(1): 6. DOI: 10.1186/s12943-023-01716-y. 
											 												 pmid: 36627608  | 
										
| [58] | Mohapatra P, Mohanty S, Ansari SA, et al. CMTM6 attenuates cisplatin-induced cell death in OSCC by regulating AKT/c-Myc-driven ribosome biogenesis[J]. FASEB J, 2022, 36(10): e22566. DOI: 10.1096/fj.202200808RR. | 
| [59] | Huang X, Liu W, Liu C, et al. CMTM6 as a candidate risk gene for cervical cancer: comprehensive bioinformatics study[J]. Front Mol Biosci, 2022, 9: 983410. DOI: 10.3389/fmolb.2022.983410. | 
| [60] |  
											  Huang X, Xiang L, Wang B, et al.  CMTM6 promotes migration, invasion, and EMT by interacting with and stabilizing vimentin in hepatocellular carcinoma cells[J]. J Transl Med, 2021, 19(1): 120. DOI: 10.1186/s12967-021-02787-5. 
											 												 pmid: 33757532  | 
										
| [61] |  
											  Ho P, Melms JC, Rogava M, et al.  The CD58-CD2 axis is co-regulated with PD-L1 via CMTM6 and shapes anti-tumor immunity[J]. Cancer Cell, 2023, 41(7): 1207-1221.e12. DOI: 10.1016/j.ccell.2023.05.014. 
											 												 pmid: 37327789  | 
										
| [62] |  
											  Huang Y, Zhu Y, Yang J, et al.  CMTM6 inhibits tumor growth and reverses chemoresistance by preventing ubiquitination of p21 in hepatocellular carcinoma[J]. Cell Death Dis, 2022, 13(3): 251. DOI: 10.1038/s41419-022-04676-1. 
											 												 pmid: 35304440  | 
										
| [63] | Peng QH, Wang CH, Chen HM, et al. CMTM6 and PD-L1 coexpression is associated with an active immune microenvironment and a favorable prognosis in colorectal cancer[J]. J Immunother Cancer, 2021, 9(2): e001638. DOI: 10.1136/jitc-2020-001638. | 
| [64] | Liang HY, Chen SL, Cai SH, et al. CMTM6 recruits T cells within the endocervical adenocarcinoma microenvironment and suppresses cell proliferation via the p53 pathway[J]. J Med Virol, 2023, 95(3): e28605. DOI: 10.1002/jmv.28605. | 
| [65] | Shi S, Ma HY, Sang YZ, et al. CMTM6 expression and clinical significance of and in triple-negative breast cancer[J]. Biomed Res Int, 2022, 2022: 8118909. DOI: 10.1155/2022/8118909. | 
| [1] | 韦伟, 蔡曌颖, 钱亚云. 通关藤联合XELOX方案促进人结直肠癌HCT116细胞双硫死亡的作用[J]. 国际肿瘤学杂志, 2024, 51(9): 545-555. | 
| [2] | 袁胜芳, 任婕, 林卫佳, 姬泽萱, 张长洪, 王布. EGFR共突变状态对晚期肺腺癌患者预后的价值研究[J]. 国际肿瘤学杂志, 2024, 51(9): 556-562. | 
| [3] | 尹浩, 吴旭栋, 王磊. 螺旋断层放疗治疗食管癌的临床疗效及安全性分析[J]. 国际肿瘤学杂志, 2024, 51(9): 578-584. | 
| [4] | 施学兵, 吴静, 邓文霞. Vav3与恶性肿瘤的关系[J]. 国际肿瘤学杂志, 2024, 51(9): 585-589. | 
| [5] | 韩晓旭, 张楠, 刘帅. 孕烷X受体在乳腺癌耐药中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 590-594. | 
| [6] | 伍杨, 李甜, 张润兵, 史婷婷, 高春, 郑晓凤, 张久聪. 胃癌及食管胃结合部癌免疫及靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 595-600. | 
| [7] | 詹海峰, 王文学, 耿嘉蔚. 晚期结直肠癌精准分子靶向治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(9): 601-605. | 
| [8] | 郭玮, 王冬慧, 王振华, 薛昭君. 晚期肿瘤患者PD-1单抗治疗后免疫相关甲状腺功能异常与生存情况的相关性[J]. 国际肿瘤学杂志, 2024, 51(8): 481-486. | 
| [9] | 刘文会, 殷平, 戚洁. 血清G-17、sB7-H3、DKK1检测对早期胃癌的诊断价值[J]. 国际肿瘤学杂志, 2024, 51(8): 498-503. | 
| [10] | 王燕. 经阴道超声弹性成像联合血清miR-144-3p、CMTM6在宫颈癌前病变和宫颈癌中的鉴别诊断价值[J]. 国际肿瘤学杂志, 2024, 51(8): 504-509. | 
| [11] | 王秋实, 徐瑞涛, 李松, 褚佳慧, 刘联. 免疫检查点抑制剂相关多器官不良反应研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 510-514. | 
| [12] | 李志伟, 翟春宝. 中药多酚类成分抗结直肠癌作用研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 526-531. | 
| [13] | 彭丹, 吕璐, 孙鹏飞. 影像组学在宫颈癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(8): 532-537. | 
| [14] | 孟繁明. 伊尼妥单抗联合卡培他滨治疗曲妥珠单抗经治的HER2阳性晚期乳腺癌1例[J]. 国际肿瘤学杂志, 2024, 51(8): 538-541. | 
| [15] | Saber Amin, Chi Lin. 质子束放疗在中枢神经系统肿瘤患者中的应用趋势:美国国家癌症数据库分析(2004—2021年)[J]. 国际肿瘤学杂志, 2024, 51(7): 424-431. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||
