国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (1): 35-40.doi: 10.3760/cma.j.cn371439-20200527-00006

• 论著 • 上一篇    下一篇

局部晚期宫颈癌术后辅助治疗的影响因素及其列线图风险模型的构建

于明月1,2, 陈峥峥3, 赵旭旭3, 任萍萍3, 张影3, 葛丽4, 朱美玲3, 赵卫东1,2,3()   

  1. 1蚌埠医学院研究生院 233030
    2安徽省肿瘤医院妇瘤科,合肥 230031
    3安徽省立医院妇产科,合肥 230001
    4皖南医学院研究生院,芜湖 241002
  • 收稿日期:2020-05-27 修回日期:2020-09-30 出版日期:2021-01-08 发布日期:2021-01-21
  • 通讯作者: 赵卫东 E-mail:victorzhao@163.com

Factors related to postoperative adjuvant therapy of locally advanced cervical cancer and building of a nomogram prediction model

Yu Mingyue1,2, Chen Zhengzheng3, Zhao Xuxu3, Ren Pingping3, Zhang Ying3, Ge Li4, Zhu Meiling3, Zhao Weidong1,2,3()   

  1. 1School of Graduate, Bengbu Medical College, Bengbu 233030, China
    2Department of Gynecologic Oncology, Anhui Provincial Cancer Hospital, Hefei 230031, China
    3Department of Obstetrics and Gynecology, Anhui Provincial Hospital, Hefei 230001, China
    4School of Graduate, Wannan Medical College, Wuhu 241002, China
  • Received:2020-05-27 Revised:2020-09-30 Online:2021-01-08 Published:2021-01-21
  • Contact: Zhao Weidong E-mail:victorzhao@163.com

摘要:

目的 探讨ⅠB1~ⅡA2期[按2018年国际妇产科联盟(FIGO)分期标准]宫颈癌术后辅助治疗的相关影响因素,建立个体化预测局部晚期宫颈癌术后辅助治疗风险的列线图模型。方法 以2009年1月至2019年12月于安徽省立医院行手术治疗的ⅠB1~ⅡA2期宫颈鳞状细胞癌患者714例为研究对象,分析其临床病理资料。采用多因素logistic回归分析宫颈癌术后辅助治疗的影响因素,并建立预测宫颈癌术后辅助治疗风险的列线图模型,用一致性系数(C-index)评估模型的预测性能,校准曲线评估模型的符合度。结果 单因素分析提示,宫颈癌术后辅助治疗与患者的孕次(χ2=11.506,P=0.001)、是否合并基础疾病(高血压或糖尿病)(χ2=7.668,P=0.006)、鳞状细胞癌抗原(SCC-Ag)水平(χ2=19.392,P<0.001)、影像学检查是否伴有危险因素(χ2=16.392,P<0.001)、FIGO分期(χ2=25.686,P<0.001)、肿瘤大小(χ2=9.392,P=0.025)和手术路径(χ2=16.590,P<0.001)有关。多因素分析提示,孕次>2次(OR=1.951,95%CI为1.355~2.808,P<0.001)、SCC-Ag≥1.5 μg/L(OR=2.021,95%CI为1.444~2.829,P<0.001)、FIGO分期为ⅠB3~ⅡA2期(ⅠB3期:OR=1.933,95%CI为1.139~3.282,P=0.015;ⅡA1期:OR=2.723,95%CI为1.556~4.765,P<0.001;ⅡA2期:OR=3.159,95%CI为1.502~6.646,P=0.002)、合并基础疾病(高血压或糖尿病)(OR=1.867,95%CI为1.051~3.318,P=0.033)、影像学检查伴有危险因素(OR=1.997,95%CI为1.127~3.537,P=0.018)、未行新辅助治疗(术前行辅助治疗1疗程:OR=0.402,95%CI为0.207~0.783,P=0.007)、行腹腔镜手术(OR=2.177,95%CI为1.524~3.112,P<0.001)为宫颈癌术后追加辅助治疗的独立影响因素。根据筛选出的变量所构建的预测宫颈癌术后辅助治疗风险的列线图模型具有较好的预测性能(C-index为0.702)和符合度。结论 孕次>2次、SCC-Ag≥1.5 μg/L、FIGO分期为ⅠB3~ⅡA2期、合并基础疾病(高血压或糖尿病)、影像学检查伴有危险因素、未行新辅助治疗、行腹腔镜手术为宫颈癌术后追加辅助治疗的独立影响因素,构建了可用于预测局部晚期宫颈癌术后辅助治疗风险的列线图模型,可为临床治疗选择提供依据。

关键词: 宫颈肿瘤, 列线图, 影响因素

Abstract:

Objective To explore the related factors of postoperative adjuvant therapy for cervical cancer stagedⅠB1-ⅡA2 [according to 2018 International Federation of Gynecology and Obstetrics (FIGO) staging standard], and to establish a nomogram model to predict the risk of postoperative adjuvant therapy for locally advanced cervical cancer. Methods A total of 714 patients with cervical squamous cell cancer staged FIGO ⅠB1-ⅡA2 treated by surgery in Anhui Provincial Hospital were selected as the research objects from January 2009 to December 2019, and their clinicopathological data were analyzed. Multiple logistic regression analysis was used to determine the influencing factors, and a nomogram model was established to predict the risk of postoperative adjuvant treatment of cervical cancer. The predictive performance of the model was evaluated with the consistency index (C-index), and the compliance of the model was evaluated with the calibration curve. Results Univariate analysis suggested that postoperative adjuvant therapy for cervical cancer was associated with gravidity (χ2=11.506, P=0.001), underlying disease (hypertension or diabetes) (χ2=7.668, P=0.006), squamous cell cancer antigen (SCC-AG) level (χ2=19.392, P<0.001), imaging risk factors (χ2=16.392, P<0.001), FIGO stage (χ2=25.686, P<0.001), tumor size (χ2=9.392, P=0.025) and surgical path (χ2=16.590, P<0.001). Multivariate logistic regression analysis suggested that the number of pregnancy >2 times (OR=1.951, 95%CI: 1.355-2.808, P<0.001), SCC-Ag ≥1.5 μg/L (OR=2.021, 95%CI: 1.444-2.829, P<0.001), FIGO stage ⅠB3-ⅡA2 [ⅠB3 (OR=1.933, 95%CI: 1.139-3.282, P=0.015); ⅡA1 (OR=2.723, 95%CI: 1.556-4.765, P<0.001); ⅡA2 (OR=3.159, 95%CI: 1.502-6.646, P=0.002)], with underlying disease (hypertension or diabetes) (OR=1.867, 95%CI: 1.051-3.318, P=0.033), imaging risk factors (OR=1.997, 95%CI: 1.127-3.537, P=0.018), without neoadjuvant therapy [preoperative neoadjuvant therapy for 1 cycle (OR=0.402, 95%CI: 0.207-0.783, P=0.007)] and laparoscopic surgery (OR=2.177, 95%CI: 1.524-3.112, P<0.001) were independent influencing factors for postoperative adjuvant treatment of cervical cancer. Based on the screened variables, the nomogram model to predict the risk of postoperative adjuvant treatment for cervical cancer has good predictive performance (C-index was 0.702) and compliance. Conclusion The number of pregnancy >2 times, SCC-Ag ≥1.5 μg/L, FIGO stage ⅠB3-ⅡA2, with underlying disease (hypertension or diabetes), imaging risk factors, without neoadjuvant therapy, and laparoscopic surgery are independent influencing factors for postoperative adjuvant treatment of cervical cancer. A nomogram model has been constructed to predict the risk of postoperative adjuvant therapy for locally advanced cerrical cancer, and it can provide evidence for clinical treatment selection.

Key words: Uterine cervical neoplasms, Nomograms, Influencing factors