[1] Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles[J]. Trends Biotechnol, 2011, 29(7): 323332.
[2] Thomas R, Park IK, Jeong YY. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer[J]. Int J Mol Sci, 2013, 14(8): 1591015930.
[3] TorayaBrown S, Sheen MR, Baird JR, et al. Phagocytes mediate targeting of iron oxide nanoparticles to tumors for cancer therapy[J]. Integr Bio(Camb), 2013, 5(1):159171.
[4] MaierHauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic ironoxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme [J]. J Neurooncol, 2011, 103(2):317324.
[5] Estevanato L, Cintra D, Baldini N, et al. Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system [J]. Int J Nanomedicine, 2011, 6:17091717.
[6] Gao H, Jiang X. Progress on the diagnosis and evaluation of brain tumors[J]. Cancer Imaging, 2013, 13(4):466481.
[7] Ludwig R, Stapf M, Dutz S, et al. Structural properties of magnetic nanoparticles determine their heating behavior an estimation of the in vivo heating potential[J]. Nanoscale Res Lett, 2014, 9(1):602.
[8] Fourmy D, Carrey J, Gigoux V. Targeted nanoscale magnetic hyperthermia: challenges and potentials of peptidebasedtargeting[J]. Nanomedicine (Lond), 2015, 10(6):893896.
[9] MarcosCampos I, Asín L, Torres TE, et al. Cell death induced by the application of alternating magnetic fields to nanoparticleloaded dendritic cells. Nanotechnology[J]. 2011, 22(20): 205101.
[10] RodríguezLuccioni HL, LatorreEsteves M, MéndezVega J, et al. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles [J]. Int J Nanomedicine, 2011, 6:373380.
[11] Guardia P, Di Corato R, Lartigue L, et al. Watersoluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment [J]. ACS Nano, 2012, 6(4): 30803091.
[12] Bae KH, Park M, Do MJ, et al. Chitosan oligosaccharidestabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia [J]. ACS Nano, 2012, 6(6): 52665273.
[13] Lee JH, Jang JT, Choi JS, et al. Exchangecoupled magnetic nanoparticles for efficient heat induction[J]. Nat Nanotechnol, 2011, 6(7): 418422.
[14] Noh SH, Na W, Jang JT, et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis [J]. Nano Lett, 2012, 12(7):37163721.
[15] Mahmoudi K, Hadjipanayis CG. The application of magnetic nanoparticles for the treatment of brain tumors [J]. Front Chem, 2014, 2: 109.
[16] Salunkhe AB, Khot VM, Pawar SH. Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review[J]. Curr Top Med Chem, 2014,14(5): 572594.
[17] van Landeghem FK, MaierHauff K, Jordan A, et al. Postmortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles[J]. Biomaterials, 2009, 30(1): 5257.
[18] MaierHauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic ironoxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme[J]. J Neurooncol, 2011, 103(2):317324.
[19] Alphandéry E. Perspectives of breast cancer thermotherapies[J]. J Cancer, 5(6): 472479.
[20] Oliveira TR, Stauffer PR, Lee CT. Magnetic fluid hyperthermia for bladder cancer: a preclinical dosimetry study [J]. Int J Hyperthermia, 2013, 29(8): 835844.
[21] 尹燕鹰, 顾宁, 洪敏, 等. 靶向磁性热疗对小鼠结肠癌皮下移植模型作用的观察[J]. 中华肿瘤防治杂志, 2013, 20(4):249253.
[22] Dutz S, Hergt R. Magnetic particle hyperthermia—a promising tumor therapy? [J]. Nanotechnology, 2014, 25(45): 452001. |